PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Thermal Comfort in the Intelligent Building in Winter Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper analyses thermal sensations, preferences and acceptability as well as humidity sensations of students in the intelligent building "Energis" of the Kielce University of Technology (Poland). The tests were performed in 8 lecture rooms, during which the volunteers filled in the anonymous questionnaires (with 3 to 7 possible answers for each question) and – simultaneously – physical air parameters were measured with Testo 400 microclimate meter. The study aimed to determine if the intelligent building provides proper indoor environment conditions during the heating season and to assess the accuracy of the standard methodology for thermal comfort determination. Experimental analysis of thermal and humidity sensations revealed that a share of the respondents critically assessed the indoor environment: 17% regarding temperature and 30% regarding humidity. Moreover, the standard methodology for thermal comfort calculations proved overwhelmingly inaccurate compared to the experimental data (with the results for 6 rooms being beyond the 50% error range). Since smart buildings are still not very common in Central Europe, the experimental data obtained in the study can be valuable both from the scientific but also practical point of view – providing useful data for building engineers and designers.
Rocznik
Tom
Strony
45--54
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Kielce, Poland
  • Faculty of Mechanical Engineering, VSB – Technical University of Ostrava, Ostrava-Poruba, Czech Republic
  • Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Kielce, Poland
Bibliografia
  • Aghniaey, S., Lawrence, T.W., Sharpton, T.N., Douglass, S.P., Oliver, T., Sutter, M. (2019). Thermal comfort evaluation in campus classrooms during room temperature adjustment corresponding to demand response. Building and Environment, 148, 488-497. http://10.1016/j.buildenv.2018.11.013
  • Amanowicz, Ł., Wojtkowiak, J. (2021). Comparison of single- and multipipe earth-to-air heat exchangers in terms of energy gains and electricity consumption: a case study for the temperate climate of Central Europe. Energies, 14, 8217. https://doi.org/10.3390/en14248217
  • Białek, A., Koltuk, B. (2021). Thermal comfort measurements in the Energis building. Structure and Environment, 13, 10-15. https://doi.org/10.30540/sae-2021-002
  • Dąbek, L., Świątkowski, A., Dziaduszek, J. (2002). Studies on the utilisation of spent palladium-activated carbon (Pd/AC) catalysts, Adsorption Science and Technology, 20, 683-693. https://doi.org/10.1260/02636170260504369
  • Dębska, L. (2021). Assessment of the indoor environment in the intelligent building, Civil and Environmental Engineering, 17, 572-582. https://doi.org/10.2478/cee-2021-0058
  • Dudkiewicz, E., Jeżowiecki, J. (2009). Dyskomfort lokalny na stanowisku pracy, Rocznik Ochrona Środowiska, 11, 751-759.
  • Hečko, D., Mičko, P., Holubčík, M., Kapjor, A. (2021). Experimental simulation of hydrate formation process in a circulating device, Processes, 9(9), 1529. https://doi.org/10.3390/pr9091529
  • ISO Standard 7730 (2005). Ergonomics of the Thermal Environment – Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria;, Geneva, Switzerland, 2005.
  • Krawczyk, N. (2021). Thermal comfort in the low energy building – validation and modification of the Fanger model, E3S Web of Conferences, 246. https://doi.org/10.1051/e3sconf/202124615003
  • Krawczyk, N., Krakowiak, J. (2021). The comparison of thermal comfort test results in selected traditional and modern buildings, E3S Web of Conferences, 286. https://doi.org/10.1051/e3sconf/202128602008
  • Kuśmierek, K., Dąbek, L., Świątkowski, A., Syga, P. (2014). Influence of chlorine atom number in chlorophenols molecules on their adsorption on activated Carbon, Fresenius Environmental Bulletin, 23(3), 947-951.
  • Majewski, G., Telejko, M., Orman, Ł.J. (2017). Preliminary results of thermal comfort analysis in selected buildings, E3S Web of Conferences, 17, 00056. https://doi.org/10.1051/e3sconf/20171700056
  • Maliszewska, A., Szkarowski. A., Chernykh, A. (2019). Normative problems of the nitrogen oxides concentration limiting in the human residence environment, Rocznik Ochrona Środowiska, 21, 1328-1342.
  • Merabtine, A., Maalouf, C., Waheed Hawila, A.A., Martaj N., Polidori, G. (2018). Building energy audit, thermal comfort, and IAQ assessment of a school building: A case study, Building and Environment, 145, 62-76. https://doi.org/10.1016/j.buildenv.2018.09.015
  • Pafcuga, M., Holubcik, M., Durcansky, P., Kapjor, A., Malcho, M. (2021). Small heat source used for combustion of wheat-straw pellets, Applied Sciences, 11(11), 5239. https://doi.org/10.3390/app11115239
  • Pavlenko, A. (2020). Energy conversion in heat and mass transfer processes in boiling emulsions, Thermal Science and Engineering Progress, 15, 100439. https://doi.org/10.1016/j.tsep.2019.100439
  • Pavlenko, A. (2021). Self-preservation effect of gas hydrates, Rocznik Ochrona Środowiska, 23, 346-355.
  • Pavlenko, A.M., Koshlak H. (2022). A new method for the rapid synthesis of gas hydrates for their storage and transportation, Environmental and Climate Technologies, 26(1), 199-212. https://doi.org/10.2478/rtuect-2022-0016
  • Wojtkowiak, J., Amanowicz, Ł. (2020). Effect of surface corrugation on cooling capacity of ceiling panel, Thermal Science and Engineering Progress, 19, 100572. https://doi.org/10.1016/j.tsep.2020.100572
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6147d19-f09a-409a-8475-255404f7cc99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.