PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetic Study on the Preparation of Aluminum Fluoride Based on Fluosilicic Acid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reasonable mathematical derivation and mechanism model in the process of producing aluminum fluoride by fluosilicic acid is the key to the industrial treatment of fluorine resources in the tail gas of phosphate ore. In this work, aluminum fluoride was generated directly by fluosilicic acid to extract fl uorine from the tail gas of phosphate rock. The uncreated-core model dominated by interfacial reaction and the uncreated-core model dominated by internal diffusion-reaction were then respectively utilized to describe the reaction kinetics of the generation of aluminum fluoride. The result showed that the uncreated-core model was dominated by interface reaction and internal diffusion, the apparent reaction order n = 1, and the activation energy Ea = 30.8632 kJ . mol–1. Product characterization and kinetic analysis were employed to deduce the reaction mechanism of preparing aluminum fluoride. The theoretical basis for the low-cost recycling of fluorine resources in the tail gas of industrial phosphate ore was provided in this work.
Rocznik
Strony
10--16
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
  • Department of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
autor
  • Department of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
autor
  • Department of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
autor
  • Department of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
autor
  • Department of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
Bibliografia
  • 1. Zhang, J., Zhu, L., Yang, G. & Xie, F. (2007). The study of the source of fluorine and its influence on environment in phosphorite of Zhijin in Guizhou, 17 October 2007 (pp. 538–540). Qingdao, China: International Conference on Mine Hazards Prevention and Control.
  • 2. Will, R.K. (2016). The Benefi ts of Isolating & Utilizing Fluorine from Phosphate Operations, 18–20 March 2016 (pp. 267–72). Marrakech, Morocco: 3rd International Symposium on Innovation and Technology in the Phosphate Industry.
  • 3. Petlin, IV & Lesnikova, M.S. (2017). Ways of processing and recycling of fluorine-containing waste of aluminum industry Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya I Khimicheskaya Tekhnologiya. 60(4), 108–113. DOI: 10.6060/tcct.2017604.5352
  • 4. Hou, J., Shi, D., Wang, Z., Gao, B., Shi, Z. & Hu, X. (2017). Influence of Additives on Bath Analysis in Aluminum Electrolysis. JOM. 69(10), 2057–064. DOI: 10.1007/s11837-017-2482-8.
  • 5. Murashkevich, A.N., Vorobev, N.I., Pechkovskii, V.V., Sechko, S.I. & Pimenov, V.V., (1986). Production of sodium metasilicate from silica-gel, aluminum fluoride production wastes. Khimicheskaya Promyshlennost. 11, 700.
  • 6. Dreveton, A. (2012). Manufacture of Aluminium Fluoride of High Density and Anhydrous Hydrofl uoric Acid from Fluosilicic Acid, 9-13 May 2012 (pp. 255–265). Marrakesh, Morocco: 1st International Symposium on Innovation and Technology in the Phosphate Industry.
  • 7. Korobitsyn, A.S., Smirnov, A.V. & Kondakov, V.P. (1980). Improvement of technology of aluminum fluoride from hydrofluoric-acid production. Khimicheskaya Promyshlennost. 10, 605–606.
  • 8. Elrashidi, M.A. & Lindsay, W.L. (1986). Solubility of aluminum fluoride, fluorite, and fluorophlogopite minerals in soils. Soil. Sci. Soc. Am. J. 50(3), 594–598. DOI: 10.2136/sssaj1986.03615995005000030010x.
  • 9. Vian, A., Brusi, J.M., Guardiola, E. & Diago, A. (1984). Study of formation-decomposition of fluosilicate in a phosphoric-acid purification process. Revista Latinoamericana De Ingenieria Quimica Y Quimica Aplicada-Latin American J. Chem. Engin. Appl. Chem. 14(1), 95–102.
  • 10. Long, B., Wang, Z., Zhang, Q., Ke, W. & Ding, Y. (2018). Improved process to prepare high-purity anhydrous potassium fluoride from wet process phosphoric acid. Chem. Eng. Commun. 205(10), 1342–1350. DOI: 10.1080/00986445.2018.1450246.
  • 11. Will, R.K. (2016). The Benefits of Isolating & Utilizing Fluorine from Phosphate Operations, 18-20 May 2016 (pp. 267–272). Marrakech, Morocco: 3rd International Symposium on Innovation and Technology in the Phosphate Industry.
  • 12. Krysztafkiewicz, A., Rager, B. & Maik, M. (1996). Silica recovery from waste obtained in hydrofluoric acid and aluminum fluoride production from fluosilicic acid. J. Hazard Mater. 48(1–3), 31–49. DOI: 10.1016/0304-3894(95)00126-3.
  • 13. Zeng, R. & Ge, Y. (2019). US patent CN110316749-A. Washington, D.C.: U.S. Patent an d Trademark Office.
  • 14. Grobelny, M. (1977). Effect of reaction conditions on properties of silica obtained in reaction of fluorosilicic acid with aluminum hydroxide. Przem. Chem. 56(10), 533–536.
  • 15. Martin, J.E., Wilcoxon, J.P., Schaefer, D. & Odinek, J. (1990). Fast aggregation of colloidal silica. Phys. Rev. A. 41(8), 4379–4391. DOI: 10.1103/PhysRevA.41.4379.
  • 16. Versteeg.Pm & Thoonen, T.J. (1972). Aluminum fluoride from waste hydro-fluo-silicic acid. Abstracts Papers Amer. Chem. Society. 164, 24.
  • 17. Bayat, M., Taeb, A. & Rastegar, S. (2002). Investigation of the filtration rate of silica in aluminum fluoride production from silicic acid. Chem. Eng. Sci. 57(15), 2879–2884. DOI: 10.1016/S0009-2509(02)00216-6.
  • 18. Bayat, M., Taeb, A. & Rastegar, S. (2005). The contribution of molecular diffusion in silica coating and chemical reaction in the overall rate of reaction of aluminum hydroxide with fluosilicic acid. Iranian J. Chem. & Chem. Engin-Internat. English Edition. 24(4), 15–24.
  • 19. Huang, Y., Dou, Z., Zhang, T-a & Liu, J. (2017). Leaching kinetics of rare earth elements and fluoride from mixed rare earth concentrate after roasting with calcium hydroxide and sodium hydroxide. Hydrometallurgy. 173, 15–21. DOI: 10.1016/j.hydromet.2017.07.004.
  • 20. Lu, G., Zhang, T., Zhang, G., Zhang ,W., Zhang, Y., Dou, Z., Wang, L., Wang, Y. & Xie, G. (2019). Process and Kinetic Assessment of Vanadium Extraction from Vanadium Slag Using Calcifi cation Roasting and Sodium Carbonate Leaching. JOM. 71(12), 4600–4607. DOI: 10.1007/s11837-019-03672-9.
  • 21. Nie, S. (2014). Determination on silicon dioxide content in silica by potassium silicofluoride volumetric method. Ferro Alloys. 2, 53–56. Retrieved 2014, from the database of cnki on the world wide web: https://www.cnki.net.
  • 22. Yi, C. (2004). Selection of fluorosilicic acid content analysis method. Phosphate & Compound Fertilizer. 5, 65. Retrieved 2004, from the database of cnki on the world wide web: https://www.cnki.net.
  • 23. Li, MQ. (1998). A/P wet aluminum fluoride production process analysis and simulation of desilication reaction kinetics. Phosphate & Compound Fertilizer. 2, 12–18. Retrieved 1998, from the database of cnki on the world wide web: https://www.cnki.net.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a60dc0b2-283f-4b3a-8891-1bb090fa3b11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.