PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strategies of Heating and Hardening External Corners on the Example of Bending Tools for Press Brakes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper the methods of laser hardening of external tool corners on the example of bending tools for press brakes were presented. The disadvantages and limitations of the most commonly used techniques for guiding a hardening laser light beam are presented, i.e.: (i) in one pass parallel to the tool corner plane symmetry, (ii) in two passes perpendicular to the surfaces adjacent to the corner, and (iii) in one pass perpendicular to the surface adjacent to the corner by using two diode lasers. The microstructure of the tool material after laser and induction hardening was compared. A significant influence of the heating method on the microstructure of the tool material after hardening was demonstrated. The original method of hardening the outer corners of bending tools using a hardening laser beam splitter was subject to a more detailed analysis. The analysis of material heating in simultaneously hardened corner area and adjacent surfaces was carried out using the Marc/Mentat software based on the finite element method. By analyzing the temperature distributions it was shown that if a beam splitter was used, obtaining a continuous and uniform hardened layer (i.e. with comparable hardness, depth, without tempered or non-tempered areas) in the area of the outer corner and adjacent surfaces was possible. In practice, achieving such a layer is conditioned by the correct selection of the size of the k parameter which determines the distance between the separated beams of laser light. Depending on the geometry of the hardened tool corner and the parameters of the hardening laser beam, this distance can be determined experimentally or on the basis of numerical simulation.
Twórcy
  • Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Telasang G., Dutta Majumdar J., Padmanabham G., Manna I. Structure–property correlation in laser surface treated AISIH13 tool steel for improved mechanical properties. Materials Science&Engineering A 2014; 599: 255-267. https://doi.org/10.1016/j.msea.2014.01.083
  • 2. Lee J.H, Jang J.H, Joo B.D, Son Y.M, Moon YH. Laser surface hardening of AISI H13 tool steel. Transactions of Nonferrous Metals Society of China 2009; 19(4): 917-920. https://doi.org/10.1016/S1003-6326(08)60377-5
  • 3. Karamimoghadama M., Moradia M., Azamib M. A comparative investigation of different overlaps of the diode laser hardening in low-carbon steel and stainless steel. Optik 2022; 251(2):168093. https://doi.org/10.1016/j.ijleo.2021.168093
  • 4. Cordovilla F., García-Beltrán A., Sancho P., Domínguez J., Ruiz-de-Lara L., Ocaña J.L. Numerical/experimental analysis of the laser surface hardening with overlapped tracks to design the configuration of the process for Cr-Mo steels. Materials and Design 2016; 102: 225-237. https://doi.org/10.1016/j.matdes.2016.04.038.
  • 5. Slatter T., Taylor H., Lewis R., King P. The influence of laser hardening on wear in the valve and valve seat contact. Wear 2009; 267(5-8): 797-806. https://doi.org/10.1016/j.wear.2009.01.040
  • 6. Sugarova J., Sugar P., Frncik M., Necpal M. Moravcikova J., Kusy M. The Influence of the tool surface texture on friction and the surface layers properties of formed component. Advances in Science and Technology Research Journal 2018; 12(1): 181–193. https://doi.org/10.12913/22998624/85704
  • 7. Ready A. Effect of high power radiation. Academic Press, 1971.
  • 8. Mazumder J. Laser Heat Treatment: The State of the Art. Journal of Metals 2013; 35(5): 18-26. https://doi.org/10.1007/BF03338273
  • 9. Aragawa M.E., Gärtnerb E., Schubertab A. Combined laser hardening and laser surface texturing forming tool 1.2379. Procedia CIRP 2020; 94: 914-918. https://doi.org/10.1016/j.procir.2020.09.072
  • 10. Kennedy E., Byrne G., Collins D.N. A review of the use of high power diode lasers in surface hardening. Journal of Materials Processing Technology 2004; 155–156: 1855-1860. https://doi.org/10.1016/j.jmatprotec.2004.04.276
  • 11. Steen W.M., Mazumder J. Laser Material Processing. Springer-Verlag, 2010.
  • 12. Ion J.C. Surface hardening. Laser processing of engineering materials. Principles, procedure and industrial application. Elsevier Butterworth-Heinemann, 2005.
  • 13. Meijer J., Sprang van I. Optimization of laser beam transformation hardening by one single parameter. CIRP Annals 1991; 40: 183-186. https://doi.org/10.1016/S0007-8506(07)61963-5
  • 14. Kou S., Sun D.K. and Le Y.P. A fundamental-study of laser transformation hardening. Metallurgical Transactions A 1983; 14: 643-653. http://dx.doi.org/10.1007/BF02643780
  • 15. Komanduri R., Hou Z.B. Thermal analysis of the laser surface transformation hardening process. International Journal of Heat and Mass Transfer 2001; 44: 2845-2862. https://doi.org/10.1016/S0017-9310(00)00316-1
  • 16. Leung M.K.H., Man H.C., J.K. Yu. Theoretical and experimental studies on laser transformation hardening of steel by customized beam. International Journal of Heat and Mass Transfer 2007; 50: 4600-4606. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.022
  • 17. Fortunato A., Ascari A., Liverani E., Orazi L.,Cuccolini G. A comprehensive model for laser hardening of carbon steels. Journal of Manufacturing Science Engineering 2013; 135(6): 061002. https://doi.org/10.1115/1.4025563
  • 18. Anusha E., Kumar A., Shariff S. M. Finite element analysis and experimental validation of high-speed laser surface hardening process. The International Journal of Advanced Manufacturing 2021; 115(1): 2403–2421. https://doi.org/10.1007/s00170-021-07303-z
  • 19. Martinez S., Lamikiz A., Ukar E., Tabernero I., Arrizubieta I. Control loop tuning by thermal simulation applied to the laser transformation hardening with scanning optics process. Applied Thermal Engineering 2016; 98: 49-60. https://doi.org/10.1016/j.applthermaleng.2015.12.037
  • 20. Lambiase F., Di Ilio A.M., Paoletti A. Prediction of laser hardening by means of neural network. Procedia CIRP. 2013; 12: 181-186. https://doi.org/10.1016/j.procir.2013.09.032
  • 21. Knap M., Falkus J., Rozman A., Konopka K., Lamut J. The prediction of hardenability using neural networks. Archives of Metallurgy and Materials 2014; 59: 133-136. https://doi.org/10.2478/amm-2014-0021
  • 22. Sehyeok O., Hyungson K. Prediction of hardness and deformation using a 3-D thermal analysis in laser hardening of AISI H13 tool steel. Applied Thermal Engineering 2017; 121: 951-962. https://doi.org/10.1016/j.applthermaleng.2017.04.156
  • 23. Mosavi A., Salehi F., Nadaie L., Karoly S., Gorji N. E. Modeling the temperature distribution during laser hardening process, Results in Physics 2020; 16: 102883. https://doi.org/10.1016/j.rinp.2019.102883
  • 24. http://www.plasmet.net.
  • 25. Kut S., Kogut K. Method for laser hardening of tools, with splitting the laser light. Polish Patent No. Pat233215, 2016.
  • 26. MSC Software: MSC. Marc Volume B: Element Library, Version 2010.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a60d31c6-9a10-40fb-8045-3fabb32a2b0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.