Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The technology of tracking eye movements, known as oculography, has become an incredibly innovative research tool, gaining increasing popularity in the field of developmental cognitive neuroscience. This article presents an assessment of the ability to differentiate and interpret visual stimuli in a group of children, both healthy and with diagnosed developmental issues such as Asperger's syndrome. Dedicated computer games, operated using an eye tracker, were utilized for the study. During the research, eye tracking technology was utilized, enabling real-time measurement of eye movements. This technology employs a specialized device called an eye tracker, which consists of an integrated camera recording infrared radiation and emitting it towards the child being examined. The eye tracker records the reflection of radiation from the eye's fundus, allowing precise measurement of eye movements, pupil position, and duration of observation. This facilitated tracking of gaze during interactions with various stimuli such as images, text, or game animations. This method ensured accurate and non-invasive recording of children's visual reactions during interactions with dedicated computer games. The assessment of visual perception in each child was conducted using behavioral paradigms, including tasks involving gaze tracking, concentration, and memorization of moving or stationary objects. To successfully achieve the objectives of the study, data analysis, extraction, and feature selection were performed on the obtained behavioral paradigms. This analysis was based on oculographic data such as saccades, fixations, and pupillometric data. Studies employing oculography among both healthy children and those with autism spectrum disorders. The analysis of gaze and fixation values indicated significant visual preferences and reactions to stimuli present in the examined games, allowing for a better understanding of cognitive processes and the child's interaction with visual content. Observed differences in parameter values, such as saccade duration and the number of outliers, suggest varying levels of visual skills and visual reactions among the studied children. The existence of differences among individual children in their ability to react quickly and focus during interactions with computer games may have significant implications for the design of user interfaces and digital content accessible to this age group. Furthermore, the research results may have practical applications in tailoring intervention strategies and supporting perceptual development in children.
Wydawca
Rocznik
Tom
Strony
255--270
Opis fizyczny
Bibliogr. 29 poz., fig.
Twórcy
autor
- Faculty of Mathematics and Information Technology, Lublin University of Technology, 20-618 Lublin, Poland
autor
- Faculty of Mathematics and Information Technology, Lublin University of Technology, 20-618 Lublin, Poland
- Department of Computer Science, Lublin University of Technology, 20-618 Lublin, Poland
autor
- Faculty of Medicine, Medical University of Lublin, 20-059 Lublin, Poland
autor
- Department of Healthcare Management, Pharmacotherapy and Clinical Pharmacy, 79059 Lviv, Ukraine
autor
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland
Bibliografia
- 1. Mróz K. Analiza percepcji wzrokowej u dzieci z zastosowaniem okulografu. Praca magisterska. Politechnika Lubelska, 2023.
- 2. Hessels R., Hooge I. Eye tracking in developmental cognitive neuroscience – The good, the bad and the ugly. Dev Cogn Neurosci. 2019; 40: 100710.
- 3. Ting H., Wang, X., Haiming X. Eye-Tracking in Interpreting Studies: A Review of Four Decades of Empirical Studies. Front Psychol. 2022; 13: 872247.
- 4. Chan A., Lee T., Sze L., Yang N., Han Y. Eye-tracking training improves the learning and memory of children with learning difficulty. Sci Rep. 2022; 12(1): 13974.
- 5. Mościchowska I., Roguś-Turek B. Badania jako podstawa projektowania User Experience. Wydawnictwo naukowe PWN, 2015.
- 6. Bałaj B. Analizy ilościowe i jakościowe danych okoruchowych w psychologii poznawczej. Zastosowania statystyki i data mining w badaniach naukowych, Kraków: StatSoft Polska, 43–58.
- 7. Stolińska A., Andrzejewska M. Metodologiczne aspekty stosowania techniki eye trackingowej w badaniach edukacyjnych, Przegląd Badań Edukacyjnych 2017; 1(24): 259–276.
- 8. Bałaj B. Analiza i interpretacja ruchów oczu w skaningu wyobrażeniowym. Studia z Psychologii w KUL. Wydawnictwa KUL 2011; 1(17): 169–188.
- 9. https://www.geeksforgeeks.org/box-plot/ (Accessed: 28.11.2023).
- 10. https://pl.kinkagames.com/ (Accessed: 28.11.2023).
- 11. Dimigen O., Ehinger B.V. Regression-based analysis of combined EEG and eye-tracking data: Theory and applications. J Vis. 2021; 21(1): 3.
- 12. Nyström M., Dewhurst R., Andersson R., Joost van de Weijer J., Holmqvist K., Jarodzka H. Eye Tracking: a Comprehensive Guide to Methods and Measures. Oxford University Press, 2011.
- 13. Vehlen A., Spenthof I., Tönsing D., Heinrichs M., Domes G. Evaluation of an eye tracking setup for studying visual attention in face-to-face conversation. Sci Rep. 2021; 11(1): 2661.
- 14. Carter B.T., Luke S.G. Best practices in eye tracking research. International Journal of Psychophysiology 2020; 155: 49–62.
- 15. https://usabilitygeek.com/what-is-eye-tracking-when-to-use-it/ (Accessed: 28.11.2023).
- 16. Płużyczka M. The first hundred years: a history of eye tracking as a research method. Applied Linguistics Papers 2018; 25(4): 101–116.
- 17. Glasner P., Glasner L., Siebert K. Nowoczesne metody obrazowania dna oka. Forum Medycyny Rodzinnej 2016; 10(2): 73–78.
- 18. Pieniążek M. Pupilometria w okulistyce. Najnowsze trendy i doniesienia. Przegląd Okulistyczny 2011; 41(3): 2.
- 19. Coyne N.S., Ledford J.K., Lens A. Anatomia i fizjologia narządu wzroku. Seria: Podstawy Okulistyki, 2020.
- 20. Płużyczka M. Tłumaczenie a vista. Rozważania teoretyczne i badania eyetrackingowe, Wydawnictwo Naukowe Instytutu Komunikacji Specjalistycznej i Interkulturowej 2015; 9.
- 21. Pelphrey K. A., Morris J. P., McCarthy G., & LaBar K. S. Perception of dynamic changes in facial affect and identity in autism. Soc Cogn Affect Neurosci. 2007; 2(2): 140–149.
- 22. Van der Stigchel, S., & Theeuwes, J. The relationship between covert and overt attention in endogenous cuing. Perception & Psychophysics 2007; 69(5): 719–731.
- 23. Xu, H., Xuan, X., Zhang, L., Zhang, W., Zhu, M., Zhao, X. New approach to intelligence screening for children with global development delay using eye-tracking technology: A pilot study. Front Neurol. 2021; 12: 723526.
- 24. Oakes P. L., Ross-Sheehy S., & Lobo M. A. Eye movements and visual attention in infancy: a developmental perspective. Child Development 2013; 84(2): 647–661.
- 25. Gredebäck G., Fawcett C., & Melinder A. Follow the eyes: gaze cueing in infants. Developmental Science 2010; 13(6): 790–796.
- 26. Von Hofsten C., Rosander K., & K. H. The development of visual attention in infants. Cognitive Development 2005; 20(2): 179–199.
- 27. Hahn L., Klein P. Eye tracking in physics education research: A systematic literature review. Phys. Rev. Phys. Educ. Res. 2022; 18(1): 013102.
- 28. Kang D., Lee Y.K., Jeong J. Exploring the potential of event camera imaging for advancing remote pupil-tracking techniques. Appl. Sci. 2023; 13(18): 10357.
- 29. Madlenak R., Chinoracky R., Stalmasekova N., Madlenakova L. Investigating the effect of outdoor advertising on consumer decisions: An eye-tracking and A/B testing study of car drivers’ perception. Appl. Sci. 2023; 13(11): 680
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a606f54e-cc73-42b1-a4e7-6e8f47cc1b7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.