Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Using the density matrix theory, we have studied the double tunneling induced transparency slow light in the double asymmetry quantum dot molecules. With applied electric field, double tunneling induced transparency occur in the same time. Four absorption peaks are found near the resonance energy level in the absorption spectrum and the absorption peak can be tuned by the applied electric field. The velocity and bandwidth of the multiple-windows slow light can also be controlled by the applied electric field. In our model, with Te =0.1meV, we can get about 0.001c and 20GHz bandwidth in each transparency window. Such a property may be applied in all optical buffers, optical switching and filter.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
473--481
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
- Institute of Photoelectric Technology, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
autor
- Institute of Photoelectric Technology, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
autor
- Institute of Photoelectric Technology, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
autor
- Institute of Photoelectric Technology, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
Bibliografia
- [1]TUCKER R.S., PEI-CHENG KU, CHANG-HASNAIN C.J., Slow-light optical buffers: capabilities and fundamental limitations, Journal of Lightwave Technology 23(12), 2005, p. 4046.
- [2]NIELSEN P.K., THYRRESTRUP H., MØRK J., TROMBORG B., Numerical investigation of electromagnetically induced transparency in a quantum dot structure, Optics Express 15(10), 2007, pp. 6396–6408.
- [3]HOUMARK J., NIELSEN T.R., MØRK J., JAUHO A.-P., Comparison of electromagnetically induced transparency schemes in semiconductor quantum dot structures: impact of many-body interactions, Physical Review B 79(11), 2009, article 115420.
- [4]BARETTIN D., HOUMARK J., LASSEN B., WILLATZEN M., NIELSEN T.R., MØRK J., JAUHO A.-P., Optical properties and optimization of electromagnetically induced transparency in strained InAs/GaAs quantum dot structures, Physical Review B 80(23), 2009, article 235304.
- [5]LUNNEMANN P., MØRK J., Reducing the impact of inhomogeneous broadening on quantum dot based electromagnetically induced transparency, Applied Physics Letters 94(7), 2009, article 071108.
- [6]LUNNEMANN P., MØRK J., A scheme comparison of Autler–Townes based slow light in inhomogeneously broadened quantum dot media, Journal of the Optical Society of America B 27(12), 2010, pp. 2654–2664.
- [7]MARCINKEVIČIUS S., GUSHTEROV A., REITHMAIER J.P., Transient electromagnetically induced transparency in self-assembled quantum dots, Applied Physics Letters 92(4), 2008, article 041113.
- [8]TIDSTRÖM J., JÄNES P., ANDERSSON L.M., Delay-bandwidth product of electromagnetically induced transparency media, Physical Review A 75(5), 2007, article 053803.
- [9]CHUNCHAO YU, Electromagnetically induced transparency in quantum dot biexciton–exciton cascaded scheme, Optical and Quantum Electronics 46(9), 2014, pp. 1157–1164.
- [10]YING WU, XIAOXUE YANG, Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis, Physical Review A 71(5), 2005, article 053806.
- [11]HAMEDI H.R., JUZELIŪNAS G., Phase-sensitive Kerr nonlinearity for closed-loop quantum systems, Physical Review A 91(5), 2015, article 053823.
- [12]SHU-WEI CHANG, SHUN LIEN CHUANG, Slow light based on population oscillation in quantum dots with inhomogeneous broadening, Physical Review B 72(23), 2005, article 235330.
- [13]MØRK J., KJÆR R., VAN DER POEL M., YVIND K., Slow light in a semiconductor waveguide at gigahertz frequencies, Optics Express 13(20), 2005, pp. 8136–8145.
- [14]MATSUDAIRA A., LEE D., KONDRATKO P., NIELSEN D., CHUANG S.L., KIM N.J., OH J.M., PYUN S.H., JEONG W.G., JANG J.W., Electrically tunable slow and fast lights in a quantum-dot semiconductor optical amplifier near 1.55 μm, Optics Letters 32(19), 2007, pp. 2894–2896.
- [15]KONDRATKO P.K., SHU-WEI CHANG, HUI SU, SHUN-LIEN CHUANG, Optical and electrical control of slow light in p-doped and intrinsic quantum-dot electroabsorbers, Applied Physics Letters 90(25), 2007, article 251108.
- [16]SHU-WEI CHANG, KONDRATKO P.K., HUI SU, SHUN LIEN CHUANG, Slow light based on coherent pop- ulation oscillation in quantum dots at room temperature, IEEE Journal of Quantum Electronics 43(2), 2007, pp. 196–205.
- [17]NIELSEN T.R., LAVRINENKO A., MØRK J., Slow light in quantum dot photonic crystal waveguides, Applied Physics Letters 94(11), 2009, article 113111.
- [18]MØRK J., ÖHMAN F., VAN DER POEL M., CHEN Y., LUNNEMANN P., YVIND K., Slow and fast light: controlling the speed of light using semiconductor waveguides, Laser and Photonics Reviews 3(1–2), 2009, pp. 30–44.
- [19]MØRK J., LUNNEMANN P., XUE W., CHEN Y., KAER P., NIELSEN T.R., Slow and fast light in semiconductor waveguides, Semiconductor Science and Technology 25(8), 2010, article 083002.
- [20]CHUN-HUA YUAN, KA-DI ZHU, Voltage-controlled slow light in asymmetry double quantum dots, Applied Physics Letters 89(5), 2006, article 052115.
- [21]CHUN-HUA YUAN, KA-DI ZHU, YI-WEN JIANG, Slow light control with electric fields in vertically coupled InGaAs/GaAs quantum dots, Journal of Applied Physics 102(2), 2007, article 023109.
- [22]BORGES H.S., SANZ L., VILLAS-BÔAS J.M., DINIZ NETO O.O., ALCALDE A.M., Tunneling induced transparency and slow light in quantum dot molecules, Physical Review B 85(11), 2012, article 115425.
- [23]SI-CONG TIAN, CUN-ZHU TONG, REN-GANG WAN, YONG-QIANG NING, LI-JUN WANG, Tunneling induced transparency and controllable group velocity in triple and multiple quantum-dot molecules, arXiv:1310.4599 [physics.optics], 2013.
- [24]MICHAEL S., WENG W. CHOW, SCHNEIDER H.C., Group-velocity slowdown in a double quantum dot molecule, Physical Review B 88(12), 2013, article 125305.
- [25]CHUNCHAO YU, TAO WANG, Slow light between two absorbing resonance in asymmetry double quantum dots, Chinese Science Bulletin 58(20), 2013, pp. 2418–2422.
- [26]HAMEDI H.R., Inter-dot tunneling control of optical bistability in triple quantum dot molecules, Physica B: Condensed Matter 449, 2014, pp. 5–9.
- [27]HAMEDI H.R., MEHMANNAVAZ M.R., Behavior of optical bistability in multifold quantum dot molecules, Laser Physics 25(2), 2015, article 025403.
- [28]CAMACHO R.M., PACK M.V., HOWELL J.C., SCHWEINSBERG A., BOYD R.W., Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor, Physical Review Letters 98(15), 2007, article 153601.
- [29]HAMEDI H.R., Ultra-slow propagation of light located in ultra-narrow transparency windows through four quantum dot molecules, Laser Physics Letters 11(8),2014, article 085201.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a60591dd-baae-4475-8bdd-06ae96c5a149