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Using the density matrix theory, we have studied the double tunneling induced transparency slow
light in the double asymmetry quantum dot molecules. With applied electric field, double tunneling
induced transparency occur in the same time. Four absorption peaks are found near the resonance
energy level in the absorption spectrum and the absorption peak can be tuned by the applied electric
field. The velocity and bandwidth of the multiple-windows slow light can also be controlled by
the applied electric field. In our model, with Te = 0.1 meV, we can get about 0.001c and 20 GHz
bandwidth in each transparency window. Such a property may be applied in all optical buffers, op-
tical switching and filter.
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1. Introduction 

Recently, the slow light in the quantum dots (QDs) systems has been studied widely.
Most early work is based on electromagnetically induced transparency (EIT) [1–9]. EIT
has also been demonstrated in the atomic system in [10, 11] and references therein, and
it has many notable applications in quantum and nonlinear optics such as achieving
large nonlinearities, multiwave mixing, optical bistability, optical solitons, and so on.
The QDs homogeneous line width [1, 2], inhomogeneous broadening [1, 5, 6, 8],
many-body interactions [3], size and geometry [4] dependence on the slow light prop-
erties of QDs are studied. The QDs EIT absorption dip is also observed in [7]. The delay
-bandwidth product of EIT in gases as well as QDs is studied in [8]. However, the slow
factor is greatly reduced by the temperature and inhomogeneous broadening. Simul-
taneously, slow light based on coherent population oscillations in QDs at room temper-
ature [12–16] is studied due to their three-dimensional confinement potential. However,
the delay-bandwidth product is not satisfied in the practical optical communication.
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And also, slow light in QD photonic crystal waveguides is examined [17]. The slow
and fast light in semiconductor waveguides including QDs is reviewed in [18, 19]. 

Additionally, slow light based on tunneling induced transparency (TIT) is reported
in parallel and vertically coupled QDs [20–23]. Compared with EIT by employing
a control laser beam, a laser beam can transmit through a dense medium. In TIT, it is
by an external electric field that the inter-dot quantum coupling strength is tuned, and
slow light also is found in QDs. However, the QDs usually are not the same and as far
as we know, it is less reported that the TIT in the QD molecule. 

In this work, we study the double TIT slow light in the asymmetry QD molecules.
It shows multiple-windows, wide-bandwidth, and is compatible for the optical com-
munication. It will be applied in the delay line, filter, optical switching, and so on.

2. Model and theory
Figure 1a shows a schematic drawing of the QD molecules with a V scheme formed
by   and  energy levels in the QD molecule [24, 25]. It consists of two ver-
tically stacked QDs in the x direction, separated by a spacer layer and there are several
layers of QDs. Figure 1b shows the scheme of the energy levels in our system.  is
the system in the absence of excitation.   is a pair of electron and hole state
bound in the left (right) dot by applying an electromagnetic field which is a direct ex-
citon [24]. Applying a DC voltage in the y direction, the electron in the QD can be
excited from the valence to the conduction band in the lower QD, which can in turn
tunnel to the upper QD in the same layer in the figure. So, the indirect exciton state

  of the left (right) QD is formed by one hole in the left (right) QD and an
electron in the dot below it in the y direction [20].
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Fig. 1. Schematic drawing of the QD molecules which form a V scheme with   and  – see
part b (a). Schematic picture of the energy level of the asymmetric double QD molecules with applying
an electromagnetic field (b).  is the system without excitation,   is the direct exciton bound
in the left (right) QD,   is the indirect exciton after applying an electromagnetic field. The hole
and electron location for different states in the y direction for state   and  is inserted in b. 
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Firstly, the two QDs in the QD molecules are at the equal status. We can investigate
one QD at first. For the left QD in the QD molecules, we can write the Hamiltonian
as follows:

(1)

where  (i = 0, 1, 2) is the energy of state  Te is the tunneling coupling,
ωp is the probe laser frequency, and  is the optical coupling, where μ  is
the dipole momentum matrix element and E is the electric field amplitude.

The system is described by the Liouville–von Neumman–Lindblad equation,

(2)

where ρ  is the density matrix operator, H is the three-level system Hamiltonian (1),
and L(ρ ) represents the Liouville operator describing the decoherence process

(3)

where  is the decaying rate from the state  to the state  and γ i is the pure
dephasing rate. With Equations (1), (2) and (3), we can get the complete set of coupled
differential equations for the density matrix ρij elements as follows:
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(4b)

(4c)

where γij is the total off-diagonal decay rates for ρ01, ρ02 and ρ12 including  and γi.
In our system, we can adopt:  and 
From Equations (4), we can get
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(5b)

(5c)

As the double QD system is initially in the ground state  ρ00 = 1, ρ11 = ρ22 = 0.
We assume the pump field is much stronger than the signal field. At the steady state,
from Eqs. (5), we can get [26, 27]

(6)

where ωij = ωi – ωj. In the weak or strong tunneling regime [25], we adopt Te / >> Ω p.
Equation (6) can be written as 

(7)

We can get the complex susceptibility of the left QD from  It is as follows [2]:

(8)

where  is the optical confinement factor, V is the physical volume of QD, μ is the
transition element. So, the complex permittivity can be written as [2]

(9)

where  Usually, χ  is very small, so the complex refractive index of

a QD can be written as

(10)

However, for our studied QD molecule system, there are two QDs, and the right QD
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written as [25]
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(11)

where g1 and g2 account for the possibility of different strengths for the two QDs. In
the following, we assume g1 = g2 = 1/2 for the error introduced is small [25, 28]. By
using the definitions above, we can get

(12)

Finally, we can calculate the group velocity and the absorption coefficient from
Eq. (12):

(13)

(14)

where vg is the group velocity, c is the light velocity in vacuum. 

3. Discussions

For InGaAs/GaAs double QD molecules, we choose the parameters as follows: =
= 1 μeV, γ02 = 0.001γ01, = 1.6 eV, = 1.5995 eV, = 1.599 eV,

= = 1.5985 eV, Γ /V = 3 × 1021 m–3, and Te ~ 0.1–0.2 meV [21–23].
Firstly, from Equation (14), we can get the absorption coefficient of the asymmetry

QD molecules in Fig. 2. We find there are four absorption peaks in the absorption
spectrum and there are three transparency windows between the four absorption peaks.
The absorption peaks are near the resonance energy of the four energy levels. As a gen-
eral consequence of the Kramers–Kronig relations, the absorption resonance peaks im-
ply a finite frequency-dependent contribution to the refractive index. We may find
multiple-windows and wide-band slow light in the system. 

What is more, we find the absorption peaks shift with different Te. It may be applied
in the optical switches and can work at four wavelengths. For example, we can firstly
select the wavelengths at absorption peak with Te = 0.1 meV as the working wave-
lengths. Obviously, all the light will be opaque. It is the off-state of the optical switch-

ñ nbac
U

2nbac

------------------ g1 ωp ω10–
Te

h
---------- 
 

2

ω20 ωp– iγ02+( ) 1– i γ01–+
1–

g2 ωp ω30–
Te

h
---------- 
 

2

ω40 ωp– iγ02+( ) 1– i γ01–+
1–

+

+













+≈
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ing. After altering Te to 0.2 meV, we can find that the working wavelengths then are
in the transparency window and all the light is near transparency. It is the on-state of
the optical switching. 

Secondly, the refractive index with different Te = 0.1 meV is shown in Fig. 3. We
calculate the refractive index by  It is obvious that the dispersion curve is di-
vided into many normal and anomalous dispersion regimes. In the normal regimes (i.e.,

), the group velocity vg < c, so the probe field is a slow light; in the
anomalous dispersion regimes (i.e., ), the group velocity vg > c, so
it is superluminal. In Fig. 3, we can find that the normal (anomalous) dispersion regimes
correspond to the TIT window (the absorption peaks). As a consequence, the probe
field is near transparency (opaque) for the slow light (superluminal) propagation when
working in the normal (anomalous) dispersion regimes. What is more, there are several
TIT windows and absorption peaks in our two asymmetry QD molecules.

Finally, in Fig. 4, we can plot the variation values of vg /c as a function of the photon
energy which can show the normal and anomalous dispersion regimes in detail. We can
find vg /c < 0 (Figs. 4b and 4c) at the absorption peak and it is in the anomalous dis-
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Fig. 2. The absorption coefficient as a function of photon energy with Te = 0.1 meV (solid line) and
Te = 0.2 meV (dashed line).
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persion regimes. But near them, we can find that the variation of vg /c is flat in a wide
regime marked by a dashed box which shows large bandwidth property. The bandwidth
will be almost up to about 0.1 meV (24 GHz). There are four regimes satisfying the large
bandwidth property. And the slow factor c /vg may reach to about 103 in each regime.

Finally, it is interesting that HAMEDI [29] has studied TIT in four QD molecules
which can experience very narrow transparency windows accompanied by very steep
positive dispersions. Especially, by properly adjusting the electric field and tunneling
coupling effects, the number and width of transparency windows can be efficiently
controlled in such a way that one-three narrow transparency windows can be estab-
lished. Here, we have designed a simpler system and adopted different methods, three
transparency windows are also found. 

4. Conclusion

In conclusion, we have studied the double TIT slow light in the double asymmetry QD
molecules. With applied electric field, double TITs occur in the same time. The trans-
parency window is divided into many parts by four absorption peaks, and the absorp-
tion peak can be tuned by the applied electric field. The velocity and bandwidth of the
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multiple-windows slow light can also be controlled by the applied electric field. In our
model, with Te = 0.1 meV, we can get about 0.001c and 20 GHz bandwidth in each
transparency window. Such a system may be applied in all optical buffers, optical
switching and filters.
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