PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enzymatic activity of a novel halotolerant lipase from Haloarcula hispanica 2TK2

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A strain of Haloarcula hispanica isolated from Tuzkoy salt mine, Turkey exhibited extracellular lipolytic activity. Important parameters such as carbon sources and salt concentration for lipase production were investigated. Optimal conditions for the enzyme production from Haloarcula hispanica 2TK2 were determined. It was observed that the lipolytic activity of Haloarcula hispanica was stimulated by some of the carbon sources. The high lipase acitivity values were obtained in the presence of 2% (v/v) walnut oil (6.16 U/ml), 1% (v/v) fish oil (5.07 U/ml), 1% (v/v) olive oil (4.52 U/ml) and 1% (w/v) stearic acid (4.88 U/ml) at 4M NaCl concentration. Lipase was partially purified by ammonium sulfate precipitation and ultrafiltration. Optimal temperature and pH values were determined as 45oC and 8.0, respectively. Lipase activity decreased with the increasing salt concentration, but 85% activity of the enzyme was maintained at 5M NaCl concentration. The enzyme preserved 41% of its relative activity at 90oC. The partially purified lipase maintained its activity in the presence of surfactants such as Triton X-100 and SDS. Therefore, the lipase which is an extremozyme may have potential applications especially in detergent industry.
Rocznik
Strony
20--25
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Esenler, 34210 Istanbul, Turkey
autor
  • Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Esenler, 34210 Istanbul, Turkey
autor
  • Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Esenler, 34210 Istanbul, Turkey
autor
  • Marmara University, Faculty of Science and Letters, Department of Biology, Goztepe, 34722 Istanbul, Turkey
autor
  • Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Esenler, 34210 Istanbul, Turkey
Bibliografia
  • 1. Ramos, E.Z., Júnior, R.H.M., de Castro, P.F., Tardioli, P.W., Mendes, A.A., Fernandéz-Lafuente, R. & Hirata, D.B. (2015). Production and immobilization of Geotrichum candidum lipase via physical adsorption on eco-friendly support: Characterization of the catalytic properties in hydrolysis and esterification reactions. J. Mol. Catal. B-Enzym. 118, 43–51. DOI: 10.1016/j. molcatb.2015.05.009.
  • 2. Maldonado, R.R., Aguiar-Oliveira, E., Pozza, E.L., Costa, F.A.A., Mazutti, M.A., Maugeri, F. & Rodrigues, M.I. (2015). Application of yeast hydrolysate in extracellular lipase production by Geotrichum candidum in shaken flasks, stirred tank, and airlift reactors. Can. J. Chem. Eng. 93, 1524–1530. DOI: 10.1002/cjce.22260.
  • 3. Souza, R.L., Lima, R.A., Coutinho, J.A., Soares, C.M. & Lima, Á.S. (2015). Novel aqueous two-phase systems based on tetrahydrofuran and potassium phosphate buffer for purification of lipase. Process. Biochem. 50, 1459–1467. DOI: 10.1016/j.procbio.2015.05.015.
  • 4. Gupta, R., Gupta, N. & Rathi, P. (2004). Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64, 763–781. DOI: 10.1007/s00253-004-1568-8.
  • 5. Beisson, F., Tiss, A., Rivière, C. & Verger, R. (2000). Methods for lipase detection and assay: A critical review. Eur. J. Lipid. Sci. Technol. 102, 133–153. DOI: 10.1002/(SICI) 1438–9312.
  • 6. Kushner, D.J. (1993). Growth and nutrition of halophilic bacteria; In: R. H. Vreeland and L. Hochstein (eds): The Biology of Halophilic Bacteria (pp. 87–103). Boca Raton, FL, USA: CRC Press.
  • 7. Su, J., Zhang, F., Sun, W., Karuppiah, V., Zhang, G., Li, Z. & Jiang, Q. (2015). A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp. World. J. Microb. Biot. 31, 1093–1102.
  • 8. Oren, A. (2002). Cellular Origin and Life in Extreme Habitats, Halophilic Microorganisms and Their Environments (2002 ed.). NY, USA: Kluwer Academic Publishers.
  • 9. Kushner, D.J. (1978). Life in high salt and solute concentrations: halophilic bacteria; In: Kushner D.J. (ed.) Microbial Life in Extreme Environments (pp. 317–368). London, UK: Academic Press.
  • 10. Oren, A. (2000). Life at high salt concentrations; In: The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophsiology, Isolation, Identifications, Applications (3rd ed.). NY, USA: Springer Verlag.
  • 11. MacElroy, R.D. (1974). Some comments on the evolution of extremophiles. Biosystems 6, 74–75. DOI: Not found.
  • 12. Eichler, J. (2001). Biotechnological uses of archaeal extremozymes. Biotechnol. Adv. 19, 261–278. DOI: 10.1016/S0734-9750(01)00061-1.
  • 13. Gomes, J. & Steiner, W. (2004). The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol. 42, 223–235. DOI: Not found.
  • 14. van den Burg, B. (2003). Extremophiles as a source for novel enzymes. Curr Opin Microbiol. 6, 213–218. DOI: 10.1016/S1369-5274(03)00060-2.
  • 15. Emampour, M., Noghabi, K.A. & Zahiri, H.S. (2015). Molecular cloning and biochemical characterization of a novel cold-adapted alpha-amylase with multiple extremozyme characteristics. J. Mol. Catal. B: Enzym. 111, 79–86. DOI: 10.1016/j. molcatb.2014.10.012
  • 16. Brown, A.D. (1963). The peripheral structures of Gramnegative bacteria. IV. The cation-sensitive dissolution of the cell membrane of the halophilic bacterium Halobacterium halobium. Biochim. Biophys. Acta 75, 425–435. DOI: 10.1016/0006-3002(63)90630-9.
  • 17. Attar, A., Ogan, A., Yucel, S. & Turan, K. (2016). The potential of archaeosomes as carriers of pDNA into mammalian cells. Artif Cells Nanomed Biotechnol. 44, 710–716. DOI: 10.3109/21691401.2014.982800.
  • 18. Ozcan, B., Ozyilmaz, G., Cokmus, C. & Caliskan, M. (2009). Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J. Ind. Microbiol. Biotechnol. 36, 105–110. DOI: 10.1007/s10295-008-0477-8.
  • 19. Daoud, L., Kamoun, J., Ali, M.B., Jallouli, R., Bradai, R., Mechichi, T., Gargouri, Y. Ali, Y.B. & Aloulou, A. (2013). Purification and biochemical characterization of a halotolerant Staphylococcus sp. extracellular lipase. Int. J. Biol. Macromol.57, 232–237. DOI: 10.1016/j.ijbiomac.2013.03.018.
  • 20. Boutaiba, S., Bhatnagar, T., Hacene, H., Mitchell, D.A. & Baratti, J.C. (2006). Preliminary characterization of a lipolytic activity from an extremely halophilic archaeon Natronococcus sp. J. Mol. Catal. B: Enzym. 41, 21–26. DOI: 10.1016/j.molcatb.2006.03.010.
  • 21. Rohban, R., Amoozegar, M.A. & Ventosa, A. (2009). Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol. 36, 333–340. DOI: 10.1007/s10295-008-0500-0.
  • 22. Sugihara, A., Tani, T. & Tominaga, Y. (1991). Purification and characterization of a novel thermostable lipase from Bacillus sp. J. Biochem. 109, 211–216. DOI: Not found.
  • 23. Sugiura, M., Oikawa, T., Hirano, K. & Inukai, T. (1977). Purification, crystallization and properties of triacylglycerol lipase from Pseudomonas fluorescens. Biochim. Biophys. Acta 488, 353–358. DOI: 10.1016/0005-2760(77)90194-1.
  • 24. Arpigny, J.L., Jendrossek, D. & Jaeger, K.E. (1998). A novel heat-stable lipolytic enzyme from Sulfolobus acidocaldarius DSM 639 displaying similarity to polyhydroxyalkanoate depolymerases. FEMS Microbiol. Lett. 167, 69–73. DOI: 10.1111/j.1574-6968.1998.tb13209.x.
  • 25. Kim, H.K., Jung, Y.J., Choi, W.C., Ryu, H.S., Oh, T.K. & Lee, J.K. (2004). Sequence-based approach to finding functional lipases from microbial genome databases. FEMS Microbiol. Lett. 235, 349–355. DOI: 10.1111/j.1574-6968.2004.tb09609.x.
  • 26. Sengel, B.S. (2007). Investigation of microbial lipase production conditions as detergent additive. Unpublished dissertation. Ankara University, Ankara, Turkey.
  • 27. Pérez, D., Martín, S., Fernández-Lorente, G., Filice, M., Guisán, J.M., Ventosa, A. & Mellado, E. (2011). A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6(8):e23325. DOI: 10.1371/journal.pone.0023325.
  • 28. Bhatnagar, T., Boutaiba, S., Hacene, H., Cayol, J.L., Fardeau, M.L., Ollivier, B. & Baratti, J.C. (2005). Lipolytic activity from Halobacteria: Screening and hydrolase production. FEMS Microbiol. Lett. 248, 133–140. DOI: 10.1016/j.femsle.2005.05.044.
  • 29. Gutarra, M.L.E., Godoy, M.G., Maugeri, F., Rodrigues, M.I., Freire, D.M.G. & Castilho, L.R. (2009). Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bioresour Technol. 100, 5249–5254. DOI: 10.1016/j.biortech.2008.08.050.
  • 30. Li, X. & Yu, H.Y. (2014). Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol. 59, 455–463. DOI: 10.1007/s12223-014-0320-8.
  • 31. Muller-Santos, M., de Souza, E.M., Pedrosa, F.O., Mitchell, D.A., Longhi, S., Carriere, F., Canaan, S. & Krieger, N. (2009). First evidence for the salt dependent folding and activity of an esterase from halophilic archae Haloarcula marismortui. Biochim. Biophys. Acta 1791, 719–729. DOI: 10.1016/j.bbalip. 2009.03.006.
  • 32. Camacho, R.M., Mateos, J.C., Gonzalez-Reynoso, O., Prado, L.A. & Cordova, J. (2009). Production and characterization of esterase and lipase from Haloarcula marismortui. J. Ind. Microbiol. Biotechnol. 36, 901–909. DOI: 10.1007/s10295-009-0568-1.
  • 33. Delorme, V., Dhouib, R., Canaan, S., Fotiadu, F., Carrière, F. & Cavalier, J.F. (2011). Effects of surfactants on lipase structure, activity, and inhibition. Pharm. Res. 28, 1831–1842. DOI: 10.1007/s11095-010-0362-9.
  • 34. Palacios, D., Busto, M.D. & Ortega, N. (2014). Study of a new spectrophotometric end-point assay for lipase activity determination in aqueous media. LWT-Food Sci. Technol. 55, 536–542. DOI: 10.1016/j.lwt.2013.10.027.
  • 35. Takac, S. & Sengel, S. (2010). Extracellular lipolytic enzyme activity of a newly isolated Debaryomyces hansenii. Prep Biochem. Biotechnol. 40, 28–37. DOI: 10.1080/10826060903388820.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6050833-4020-4882-9766-0200e2b529e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.