PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure and properties of sintered tool gradient materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main objective of the presented is to elaborate the fabrication technology of novel sintered tool gradient materials on the basis of hard wolfram carbide phase with cobalt binding phase, and to carry out research studies on the structure and properties of the newly elaborated sintered tool gradient materials. Design/methodology/approach: The following research studies have been carried out to elaborate a new group of sintered tool gradient materials, wolfram carbide with cobalt matrix, to elaborate their fabrication technology and to determine their structure and properties: a fabrication technology of mixtures and the formation technology of wolfram carbide gradient materials with cobalt matrix WC-Co was applied and elaborated; sintering conditions were selected experimentally: time, temperature and sintering atmosphere as well as isostatic condensation, ensuring the best structure and properties; phase and chemical composition of the sintered gradient WC-Co materials was determined using EDX, EBSD methods and qualitative X-ray analysis; the structure of sintered gradient WC-Co materials was investigated using scanning microscopy and transmission electron microscopy; mechanical and physical properties of sintered gradient WC-Co materials was determined: porosity, density, hardness, resistance to abrasive wear, resistance to brittle cracking. Findings: The presented research results confirm that the newly elaborated technology of powder metallurgy, which consists in sequential coating of the moulding with layers having the increasing content of carbides and decreasing concentration of cobalt, and then sintering such a compact, ensures the acquisition of the required structure and properties, including the resistance to cracking and abrasive wear of tool gradient materials, due to earned high hardness and resistance to abrasive wear on the surface as well as high resistance to cracking in the core of the materials fabricated in such a way. Practical implications: The material presented in this paper is characterized by very high hardness of the surface and relative ductility of the core. TGM with smooth changes of the cobalt phase in the material. Originality/value: The obtained results show the possibility to manufacture TGMs on the basis of different portions of cobalt reinforced with hard ceramics particles in order to improve the abrasive resistance and ductility of tool cutting materials.
Rocznik
Strony
711--733
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] H.O. Andrén, Microstructure development during sintering and heat-treatment of cementem carbides and cermets, Materials Chemistry and Physics 67 (2001) 209-213.
  • [2] Z.G. Ban, L.L. Shaw, Synthesis and processing of nanostructured WC-Co materials, Journal of Materials Science 37 (2002) 3397-3403.
  • [3] U. Baste, S. Jacobson, A new view of the deterioration and wear of WC/Co cemented carbide rock drill buttons, Wear 264 (2008) 1129-1141.
  • [4] K. Bonny, P. De Baets, J. Quintelier, J. Vleugels, D. Jiang, O. Van der Biest, B. Lauwers, W. Liu, Surface finishing: Impact on tribological characteristics of WC-Co hardmetals, International Journal of Reinfractory Metals and Hard Materials 43 (2010) 40-54.
  • [5] A. Carpinteri, N. Puno, S. Puzzli, Strength vs. toughness optimization of microstructured composites, Chaos, Solitons and Fractals 39/3 (2009) 1210-1223.
  • [6] S.I. Cha, K.H. Lee, H.J. Ryu, S.H. Hong, Analytical modeling to calculate the hardness of ultra-fine WC-Co cemented carbides, Materials Science and Engineering A 489 (2008) 234-244.
  • [7] J.R. Cho, Optimum material composition design for thermal stress reduction in FGM lathe bit, Composites: Part A 37.
  • [8] L.A. Dobrzański, B. Dołżańska, G. Matula, Influence of carbide (W, Ti)C on the structure and properties of tool gradient materials, Archives of Materials Science and Engineering 28/10 (2007) 617-620.
  • [9] L.A. Dobrzański, B. Dołżańska, G. Matula, Influence of hard ceramic particles on structure and properties of TGM, Journal of Achievements in Materials and Manufacturing 24/2 (2007) 95-98.
  • [10] L.A. Dobrzański, B. Dołżańska, G. Matula, Structure and properties of gradient cermets reinforcer with the (W, Ti)C carbides, BichɂɄ 4/2 (2007) 15-20.
  • [11] L.A. Dobrzański, B. Dołżańska, G. Matula, Structure and properties of tool gradient materials reinforced with the WC carbides, Journal of Achievements in Materials and Manufacturing Engineering 28/1 (2008) 35-38.
  • [12] L.A. Dobrzański, K. Gołombek, Structure and properties of the cutting tools made from cemented carbides and cermets with the TiN + mono-, gradient - or multi (Ti,Al,Si)N+TiN nanocrystalline coatings, Journal of Materials Processing Technology 164-165 (2005) 805-815.
  • [13] L.A. Dobrzański, J. Hajduczek, A. Kloc-Ptaszna, Effect of sintering parameters on structure of the gradient tool materials, Journal of Achievements in Materials and Manufacturing Engineering 36/1 (2009) 33-40.
  • [14] L.A. Dobrzański, A. Kloc, G. Matula, J.M. Contreras, J.M. Torralba, Effect of manufacturing methods on structure and properties of the gradient tool materials with the non-alloy matrix reinforced with the HS6-5-2 type high-speed steel, Proceedings of the 11th International Scientific Conference on the Contemporary Achievements in Mechanics, Manufacturing and Materials Science CAM3S’2005, Gliwice-Zakopane, 2005, 223-228.
  • [15] L.A. Dobrzański, A. Kloc, G. Matula, J. Domagała, J.M. Torralba, Effect of carbon concentration on structure and properties of the gradient tool materials, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 45-48.
  • [16] L.A. Dobrzański, A. Kloc-Ptaszna, G. Matula, J.M. Torralba, Structure and properties of a gradient tool materials manufactured using the conventional powder metallurgy method, Materials Science Forum (2009) (in print).
  • [17] L.A. Dobrzański, A. Kloc-Ptaszna, G. Matula, J.M. Torralba, Structure and properties of gradient tool materials with the high-speed steel matrix, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 47-50.
  • [18] L.A. Dobrzański, A. Kloc-Ptaszna, G. Matula, J.M. Torralba, Structure and properties of the gradient tool materials of unalloyed steel matrix reinforced with HS6-5-2 high-speed steel, Archives of Materials Science and Engineering 28/4 (2007) 197-202.
  • [19] L.A. Dobrzański, A. Kloc-Ptaszna, G. Matula, J.M. Torralba, Structure and Properties of Gradient Tool Materials with HS6-5-2 High-Speed Steel, Proceedings of the 7th Asia Pacific Conference on Materials Processing, Singapore, 2006, 128-133.
  • [20] L.A. Dobrzański, A. Kloc-Ptaszna, G. Matula, Properties of sintered gradient tool WC/HS6-5-2 materials, Proceedings of the 2th International Conference on Modern Achievements in Science and Education, Netanua, Israel, 2008, 71-76.
  • [21] L.A. Dobrzański, G. Matula, G. Herranz, A. Várez, B. Levenfeld, J.M. Torralba, Metal injection moulding of HS12-1-5-5 high-speed steel using a PW-HDPE based binder, Journal of Materials Processing Technology 175 (2006) 173-178.
  • [22] L.A. Dobrzański, G. Matula, A. Várez, B. Levenfeld, J.M. Torralba, Structure and mechanical properties of HSS HS6-5-2 and HS12-1-5-5-type steel produced by modified powder injection moulding process, Journal of Materials Processing Technology 157-158 (2004) 658-668.
  • [23] L.A. Dobrzański, G. Matula, A. Várez, B. Levenfeld, J.M. Torralba, Fabrication methods and heat treatment conditions effect on tribological properties of high speed steels, Journal of Materials Processing Technology 157-158 (2004) 324-330.
  • [24] L.A. Dobrzański, A. Śliwa, W. Kwaśny, W. Sitek, The computer simulation of stresses in the Ti+TiC coatings obtained in the PVD process, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 241-244.
  • [25] L.A. Dobrzański, A. Śliwa, W. Sitek, W. Kwaśny, The computer simulation of critical compressive stresses on the PVD coatings, International Journal of Computational Materials Science and Surface Engineering 1/1 (2007) 28-39.
  • [26] L.A. Dobrzański, A. Śliwa, W. Sitek, Finite Element Method application for modeling of PVD coatings properties, Proceedings of the 5th International Surface Engineering Congress, Washington, USA, 2006, 26-29.
  • [27] L.A. Dobrzański, A. Śliwa, T. Tański, Numerical simulation model for the determination of hardness for casting the magnesium alloys McMgL16Zn1, Archives of Materials Science 29/3 (2008) 118-124.
  • [28] M.H. Enayati, G.R. Aryanpour, A. Ebnonnasir, Production of nanostructured WC–Co powder by ball milling, International Journal of Refractory Metals and Hard Materials 27/1 (2009) 159-163.
  • [29] P. Fan, J. Guo, Z.Z. Fang, P. Prichard, Design of cobalt gradient via controlling carbon content and WC grain size in liquid-phase-sintered WC–Co composite, International Journal of Refractory Metals and Hard Materials 27 (2009) 256-260.
  • [30] P. Fan, J. Guo, Z.Z. Fang, P. Prichard, Effects of Liquid-Phase Composition on Its Migration during Liquid-Phase Sintering of Cemented Carbide, Metallurgical and Materials Transactions A 40/8 (2009) 1995-2006.
  • [31] Z. Fang, G. Lockwood, A. Griffo, A dual composite of WC-Co, Metallurgical and Materials Transactions A 30 (1999) 3231-3238.
  • [32] Z.Z. Fang, Correlation of transverse rupture strength of WC-Co with hardness, International Journal of Refractory Metals and Hard Materials 23 (2005) 119-127.
  • [33] Z.Z. Fang, O.O. Eso, Liquid phase sintering of functionally graded WC-Co composities, Scripta Materialia 52 (2005) 785-791.
  • [34] J.A.M. Ferreira, M.A. Pina Amaral, F.V. Antunes, J.D.M. Costa, A study on the mechanical behaviour of WC/Co hardmetals, International Journal of Refractory Metals and Hard Materials 27/1 (2009) 1-8.
  • [35] R. Frykholm, H.O. Andre, Development of the microstructure during gradient sintering of a cementem carbide, Materials Chemistry and Physics 67 (2001) 203-208.
  • [36] R. Frykholm, B. Jansson, H.O. Andrén, Methods for atom probe analysis of microgradients in functionally graded cemented carbides, Micron 33 (2002) 639-646.
  • [37] R.M. German, A. Eugene, A. Olevsky, Modeling grain growth dependence on the liquid content in liquid-phase-sintered materials, Metallurgical and Materials Transactions A 29 (1998) 3057-3067.
  • [38] V.T. Golovchan, N.V. Litoshenko, The stress-strain behavior of WC-Co hardmetals, Computational Materials Science 49/3 (2010) 593-597.
  • [39] H.S. Kim, On the rule of mixtures for the hardness of particle reinforced composites, Materials Science and Engineering A 289 (2000) 30-33.
  • [40] H.Ch. Kim, I.J. Shon, J.K. Yoon, J.M. Doh, Consolidation of ultra fine WC and WC-Co hard materials by pulsed current activated sintering and its mechanical properties, International Journal of Refractory Metals and Hard Materials 25/1 (2007) 46-52.
  • [41] A. Kloc, L.A. Dobrzański, G. Matula, J.M. Torralba, Effect of manufacturing methods on structure and properties of the gradient tool materials with the non-alloy steel matrix reinforced with the HS6-5-2 type high-speed steel, Materials Science Forum 539-543 (2007) 2749-2754.
  • [42] I. Konyashin, S. Hlawatschek, B. Ries, F. Lachmann, A. Sologubenko, T. Weirich, A new approach to fabrication of gradient WC–Co hardmetals, International Journal of Refractory Metals and Hard Materials 28/2 (2010) 228-237.
  • [43] M.T. Laugier, Palmqvist toughness in WC-Co composites viewed as a ductile/brittle transition, Journal of Materials Science Letters 6 (1987) 768-770.
  • [44] A. Lawley, T.F. Murphy, Metallography of powder metallurgy materials, Materials Characterization 51 (2003) 315-327.
  • [45] G.H. Lee, S. Kang, Sintering of nano-sized WC-Co powders produced by a gas reduction-carburization process, Journal of Alloy and Compounds 419 (2006) 281-289.
  • [46] W. Lengauer, K. Dreyer, Functionally gradient hardmetals, Journal of Alloys and Compounds 338 (2002) 194-212.
  • [47] W. Lengauer, K. Dreyer, Tailoring hardness and toughness gradients in functional gradient hardmetals (FGHMs), International Journal of Refractory Metals and Hard Materials 24 (2006) 155-161.
  • [48] K. Liu, X.P. Li, Ductile cutting of tungsten carbide, Journal of Materials Processing Technology 113 (2001) 348-354.
  • [49] W. Liu, X. Song, J. Zhang, F. Yin, G. Zhang, A novel route to prepare ultrafine-grained WC-Co cemented carbides, Journal of Alloys and Compounds 458/1-2 (2008) 366-371.
  • [50] G. Matula, L.A. Dobrzański, B. Dołżańska, Influence of cobalt portion on structure and properties of FGHM, International Journal of Materials and Product Technology 33/3 (2008) 280-290.
  • [51] G. Matula, L.A. Dobrzański, B. Dołżańska, Structure and properties of TGM manufactured on the basis of cobalt, Journal of Achievements in Materials and Manufacturing 20 (2007) 151-154.
  • [52] G. Matula, L.A. Dobrzański, G. Herranz, A. Várez, B. Levenfeld, J.M. Torralba, Influence of Binders on the Structure and Properties of High Speed-Steel HS6-5-2 Type Fabricated Using Pressureless Forming and PIM Methods, Materials Science Forum 534-536 (2007) 693-696.
  • [53] A. Śliwa, L.A. Dobrzański, W. Kwaśny, W. Sitek, The computer simulation of internal stresses on the PVD coatings, Archives of Computational Materials Science and Surface Engineering 1/3 (2009) 183-188.
  • [54] A. Śliwa, W. Kwaśny, L.A. Dobrzański, Computer simulation of stresses in coatings obtainted the PVD process, Engineering Materials 31/3 (2010) 732-734.
  • [55] G.S. Upadhyaya, Cemented tungsten carbides, Production, Properties and Testing, Westwood, New Jersey, U.S.A., 1998.
  • [56] G.S. Upadhyaya, Materials science of cemented carbides – an overview, Materials and Design 22 (2001) 483-489.
  • [57] X. Wang, Z.Z. Fang, H.Y. Sohn, Grain growth during the early stage of sintering of nanosized WC-Co powder, International Journal of Refractory Metals and Hard Materials 26 (2008) 232-241.
  • [58] X. Wu, J. Guo, Electric-discharge compaction of graded WC-Co composities, International Journal of Refractory Metals and Hard Materials 27/1 (2009) 90-94.
  • [59] H. Zhang, Q. Lu, L. Zhang, Z. Zak Fang, Dependence of microcrack number density on microstructural parameters during plastic deformation of WC-Co composite, International Journal of Refractory Metals and Hard Materials 28 (2010) 434-440.
  • [60] H. Zhang, Z. Zak Fang, Q. Lu, Characterization of a bilayer WC–Co hardmetal using Hertzian indentation technique, International Journal of Refractory Metals and Hard Materials 27 (2009) 317-322.
  • [61] www.webelements.com
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5fcc9a5-169d-4760-ba5d-9677bde9565f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.