PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel microbial fuel cell with exchangable membrane - application of additive manufacturing technology for device fabrication

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research about exploitation the potential of waste and sludge increased drastically in the recent years. One of the most promising alternative methods of waste management is Microbial Fuel Cell (MFC), which generate clean bio-electricity using microorganisms. Organic compounds, sewage, municipal solid waste could be used as a source for microbial nutrition. The construction of MFC is one of the most important parameter in laboratory studies and during scale-up. The efficiency of MFC depends on many factors including type of membrane. To obtain optimization in terms of various operating conditions, a prototype of Microbial Fuel Cell with exchangeable membrane was projected and fabricated by additive manufacturing (AM) technology. This novel device allows to research effects of different types of separator membranes. Preliminary research showed possibility to produce 3D printed MFC systems.
Twórcy
autor
  • Research and Innovation Centre Pro-Akademia, 9/11 Innowacyjna Street, 95-050 Konstantynów Łódzki, Poland
  • Research and Innovation Centre Pro-Akademia, 9/11 Innowacyjna Street, 95-050 Konstantynów Łódzki, Poland
autor
  • Research and Innovation Centre Pro-Akademia, 9/11 Innowacyjna Street, 95-050 Konstantynów Łódzki, Poland
Bibliografia
  • [1] Kim, Kyoung-Yeol, et al. "Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater." Bioresource technology 208 (2016): 58-63
  • [2] Logan, B. E. (2008). Microbial fuel cells. John Wiley & Sons, 4-11
  • [3] Sikora, A., & Sikora, R. (2005). Mikrobiologiczne ogniwa paliwowe. Biotechnologia monografie, 2(2), 68-77
  • [4] Rabaey, K.; Boon, N.; Hofte, M.; Verstraete, W. (2005). Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol., 39, 3401-3408
  • [5] Shukla A.K., P. Suresh, S. Berchmans, A. Rajendran, (2004). Biological fuel cells and their applications, Current Science India, 87, 455-468
  • [6] Cusick R.D., Kim Y., Logan B.E.: Energy capture from thermolytic solutions in microbial reverse electro dialysis cells. Science, 335, 1474-1477 (2012)
  • [7] Logan B.E., Regan J.M.: Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 14, 512-518 (2006)
  • [8] Wang X., Feng Y.J., Lee H.: Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci. Technol. 57, 1117-1121 (2008)
  • [9] Kim H.J., Hyun M.S., Chang I.S., Kim B.H.: A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9, 365-367 (1999)
  • [10] Min B., Logan B.E: Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38, 5809-5814 (2004)
  • [11] Wang X., Feng Y.J., Lee H.: Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci. Technol. 57, 1117-1121 (2008)
  • [12] Liu H., Logan B.E.: Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38, 4040-4046 (2004)
  • [13] Liu H., Ramnarayanan R., Logan B.E.: Production of electricity during wastewater treatment using a single chamber microbial fuel Cell. Environ. Sci. Technol. 38, 2281-2285 (2004)
  • [14] Min B., Logan B.E: Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38, 5809-5814 (2004)
  • [15] Rabaey K., Clauwaert P., Aelterman P., Verstraete W.: Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol. 39, 8077-8082 (2005)
  • [16] Aelterman P., Rabaey K., Pham H.T., Boon N., Verstraete W.: Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40, 3388-3394 (2006)
  • [17] Lovley D.R.: Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr. Opin. Biotechnol. 17, 327-332 (2006)
  • [18] Reimers C.E., Girguis P., Stecher H.A., Tender L.M., Ryckelynck (N., Whaling P.: Microbial fuel cell energy from an ocean cold seep. Geobiology, 4, 123-136 (2006)
  • [19] Bedka, A., Brocki, K., Michalska, K. (2016). Microbial fuel cells - minireview of technology and application. Acta Innovations 19, 16-24
  • [20] Kang, Y. L., Pichiah, S., & Ibrahim, S. (2017). Facile reconstruction of microbial fuel cell (MFC) anode with enhanced exoelectrogens selection for intensified electricity generation. International Journal of Hydrogen Energy, 42(3), 1661-1671
  • [21] Lee J., Phung N.T., Chang I.S., Kim B.H., Sung H.C.: Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol. Lett. 223, 185-191 (2003)
  • [22] Rosenbaum M., Zhao F., Schröder U., Scholz F.: Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high-performance, noble-metal-free microbial fuel cell. Angew. Chem. Int. Ed. 45, 6658-6661 (2006)
  • [23] Patil S.A., Surakasi V.P., Koul S., Ijmulwar S., Vivek A., Shouche Y.S., Kapadnis B.P.: Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresour. Technol. 100, 5132-5139 (2009)
  • [24] Pham T.H., Rabaey K., Aelterman P., Clauwaert P., De Schamphelaire L., Boon N., Verstraete W.: Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng. Life Sci. 6, 285-292 (2006)
  • [25] Sun J., Li Y., Hu Y., Hou B., Xu Q., Zhang Y., Li S.: Enlargement of anode for enhanced simultaneous azo dye decolorization and power output in air-cathode microbial fuel cell. Biotechnol. Lett. (2012), DOI 0.1007/s10529-012-1002-8
  • [26] Chiao M., Lam K.B., Lin L.: Micromachined microbial and photosynthetic fuel cells. J. Micromech. Microeng. 16, 2547-2553 (2006)
  • [27] Mitra P., Hill G.A.: Continuous microbial fuel cell using a photoautotrophic cathode and a fermentative node. Can. J. Chem. Eng. 90, 1006-1010 (2012)
  • [28] Prasad D., Arun S., Murugesan M., Padmanaban S., Satyanarayanan R.S., Berchmans S., Yegnaraman V.: Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cells. Biosens. Bioelectron. 22, 2604-2610 (2007)
  • [29] Schaetzle O., Barrière F., Baronian K.: Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from microorganisms to electrodes for green electricity. Energy Environ. Sci. 1, 607-620 (2008)
  • [30] Sun Y., Wei J., Liang P., Huang X.: Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials. Bioresour. Technol. 102, 10886-10891 (2011)
  • [31] Rodrigo M.A., Cañizares P., García H., Linares J.J., Lobato J. (2009). Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell. Bioresour. Technol. 100, 4704-4710
  • [32] Leong, J. X., Daud, W. R. W., Ghasemi, M., Liew, K. B., & Ismail, M. (2013). Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: a comprehensive review. Renew. Sust. Energ. Rev., 28, 575-587
  • [33] Schalenbach, M.; Hoefner, T.; Paciok, P.; Carmo, M.; Lueke, Wiebke; Stolten, Detlef (2015). Gas Permeation through Nafion. Part 1: Measurements. The Journal of Physical Chemistry C. 119: 25145-25155
  • [34] Mauritz, K. A., Moore, R. B.; Moore (2004). State of Understanding of Nafion. Chemical Reviews. 104 (10): 4535-4585
  • [35] Gong, Y., Radachowsky, S. E., Wolf, M., Nielsen, M. E., Girguis, P. R., & Reimers, C. E. (2011). Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environmental science & technology, 45(11), 5047-5053
  • [36] Pasternak, G., Greenman, J., & Ieropoulos, I. (2016). Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells. ChemSusChem, 9(1), 88-96
  • [37] Tront, J. M., Fortner, J. D., Plötze, M., Hughes, J. B., & Puzrin, A. M. (2008). Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosensors and Bioelectronics, 24(4), 586-590
  • [38] Kim, BH.; Chang, IS.; Gil, GC.; Park, HS.; Kim, HJ. (2003). Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letters. 25 (7): 541-545
  • [39] Chang, I. S.; Moon, H.; Jang, J. K.; Kim, B. H. (2005). Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosensors and Bioelectronics. 20 (9): 1856-1859
  • [40] Heidrick, E S; Dolfing J.; Scott K.; Edwards S. R.; Jones C.; Curtis T. P. (2013). Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell. Applied Microbiology and Biotechnology. 97 (15): 6979-6989
  • [41] Khan, M.B.H., Kana, E.B.G., (2016). Design, implementation and assessment of a novel bioreactor for fermentative biohydrogen process development. International Journal of Hydrogen Energy 41(24), 10136-10144
  • [42] Papaharalabos, G., Greenman, J., Melhuish, C., Ieropoulos, I. (2015). A novel small scale Microbial Fuel Cell design for increased electricity generation and waste water treatment. International Journal of Hydrogen Energy 40, 4263-4268
  • [43] You, J., Preen, R.J., Bull, L., Greenman, J., Ieropoulos, I. (2017). 3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing. Sustainable Energy Technologies and Assessments 19, 94-101
  • [44] Calignano, F., Tommasi, T., Manfredi, D., Chiolerio, A. (2015). Additive Manufacturing of a Microbial Fuel Cell—A detailed study. Scientific Reports 5, 17373
  • [45] Sonawane, Jayesh M., et al. (2018) Low-cost stainless-steel wool anodes modified with polyaniline and polypyrrole for high-performance microbial fuel cells. Journal of Power Sources 379: 103-114
  • [46] Ieropoulos, Ioannis, et al. (2017) "Gelatin as a promising printable feedstock for microbial fuel cells (MFC)." International Journal of Hydrogen Energy 42.3: 1783-1790
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5fa36f0-8204-4eec-88a1-0b1433225daf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.