PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Reobservations of Recrystallization and its Effect on Mechanical and Magnetic Properties in a Severely Cold-Rolled Ni-Based Soft Magnetic Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Despite of extensive researches for decades, there are many unclear aspects for recrystallization phenomenon in the cold rolled Ni-based alloys. Hence, different thermal cycles were conducted in order to determine microstructural evolutions and its effect on the magnetic and mechanical properties of a 90% cold-rolled thin sheet of a Ni-Fe-Cu-Mo alloy (~80 μm). The obtained results revealed that the recrystallization was started at a temperature of 550°C and was completed after 4 hours. An increase in the number of annealing twins was observed with an increase in annealing temperature, which was due to a bulging and long-range migration of grain boundaries during the discontinuous recrystallization. Ordering transformation occurred in the temperature range of 400-600°C and as a result, hardness, yield strength, and UTS were increased, while with an increase in the annealing temperature these mechanical properties were decreased. Maximum toughness was obtained by annealing at 550°C for 4 hours, while the highest elongation was obtained after annealing at 1050°C, where other mechanical properties including toughness, hardness, yield strength, and UTS were decreased due to the grain growth and secondary recrystallization. Moreover, coercivity and remanence magnetization were decreased from 4.5 Oe and 3.8 emu/g for the cold rolled sample to below 0.5 Oe and 0.15 emu/g for the sample annealed at 950°C, respectively.
Twórcy
  • Yazd University, Department of Mining and Metallurgical Engineering, 89195-741, Yazd, Iran
  • Yazd University, Department of Mining and Metallurgical Engineering, 89195-741, Yazd, Iran
autor
  • Yazd University, Department of Mining and Metallurgical Engineering, 89195-741, Yazd, Iran
  • Yazd University, Department of Mining and Metallurgical Engineering, 89195-741, Yazd, Iran
Bibliografia
  • [1] G. Chin, J. Wernick, Ferromagnetic Materials, North-Holland, 1980.
  • [2] T. Akomolafe, G.W. Johnson, The effect of sheet thickness on the magnetic properties of 77 wt% Ni permalloys, J. Mater. Sci. 24, 349-354 (1989). DOI: https://doi.org/10.1007/BF00660979
  • [3] G.W. Elmen, Magnetic Properties of Perminvar 1, Bell Syst. Tech. J. 8, 21-40 (1929). DOI: https://doi.org/10.1002/j.1538-7305.1929.tb02304.x
  • [4] R.M. Bozorth, Ferromagnetism, Van Nostrand, New York, 1951.
  • [5] R.D. Enoch, A.D. Fudge, High magnetic permeability in Ni-Fe alloys, J. Appl. Phys. 17, 623-634 (1966). DOI: https://doi.org/10.1088/0508-3443/17/5/307
  • [6] K. Gupta, K.K. Raina, S.K. Sinha, Influence of process parameters and alloy composition on structural, magnetic and electrical characteristics of Ni-Fe permalloys, J. Alloys Compd. 429, 357-364 (2007). DOI: https://doi.org/10.1016/j.jallcom.2006.11.048
  • [7] X.Y. Qin, J.G. Kim, J.S. Lee, Synthesis and magnetic properties of nanostructured γ-Ni-Fe alloys, Nanostructured Mater. 11, 259-270 (1999). DOI: https://doi.org/10.1016/S0965-9773(99)00040-9
  • [8] W.D. Callister, D.G. Rethwisch, Materials science and engineering: an introduction, Wiley New York, 2013.
  • [9] E. Du T. De Lacheisserie, D. Gignoux, M. Schlenker, Magnetism: Materials and Applications, 1st ed., Springer-Verlag New York, New York, 2005. https://www.springer.com/gp/book/9780387230009
  • [10] G. Couderchon, J.F. Tiers, Some aspects of magnetic properties of Ni-Fe and Co-Fe alloys, J. Magn. Magn. Mater. 26, 196-214 (1982). DOI: https://doi.org/10.1016/0304-8853(82)90152-4
  • [11] G.A.V. Sowter, Soft magnetic materials for audio transformers: history, production, and applications, J. Audio Eng. Soc. 35, 760-777 (1987). https://www.aes.org/e-lib/browse.cfm?elib=5181
  • [12] G.F. Vander Voort, ed., ASM Handbook: Volume 9 Metallography and Microstructures, ASM International, Ohio, 2004.
  • [13] D.W. Dietrich, Ed., ASM Handbook: Volume 92: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, 1990. DOI: https://doi.org/10.31399/asm.hb.v02.9781627081627
  • [14] J.R. Davis, ed., ASM Specialty Handbook: Nickel, cobalt, and their alloys, ASM International, Ohio, 2000. DOI: https://doi.org/10.1361/ncta2000p003
  • [15] F.G. Hanejko, H.G. Rutz, C.G. Oliver, Effects of processing and materials on soft magnetic performance of powder metallurgy parts, in: Present. 1992 Powder Metall. World Congr., San Francisco, 1992: p. 375-403. www.hoeganaes.com.
  • [16] V. Tsakiris, M. Petrescu, Influence of purity and fabrication technology on the properties of soft magnetic Fe-50Ni alloy. Sci. Bull, Univ. Politeh. Bucharest. 69, 67-78 (2007). DOI: https://doi.org/10.13140/2.1.3045.0564
  • [17] P. Vahdati Yekta, A. Ghasemi, E.M. Sharifi, Magnetic and mechanical properties of cold-rolled permalloy, J. Magn. Magn. Mater. 468, 155-163 (2018). DOI: https://doi.org/10.1016/j.jmmm.2018.07.088
  • [18] A.T. English, G.Y. Chin, Metallurgy and magnetic properties control in permalloy. J. Appl. Phys. 38, 1183-1187 (1967). DOI: https://doi.org/10.1063/1.1709532
  • [19] H.H. Scholefield, R.V. Major, B. Gibson, A.P. Martin, Factors influencing the initial permeability of some alloys based on 80Ni20Fe, J. Appl. Phys. 18, 41-48 (1967). DOI: https://doi.org/10.1088/0508-3443/18/1/309
  • [20] T. Akomolafe, G.W. Johnson, The influence of texture on the magnetic permeability of 77 wt% Ni Permalloys, J. Mater. Sci. 21, 2403-2408 (1986). DOI: https://doi.org/10.1007/BF01114284
  • [21] E.G. Taylor, G.W. Johnson, The influence of molybdenum concentration on the magnetic permeability and kinetics of order formation in molybdenum permalloys, J. Mater. Sci. 12, 51-60 (1977). DOI: https://doi.org/10.1007/bF00738471
  • [22] F. Pfeifer, C. Radeloff, Soft magnetic Ni-Fe and Co-Fe alloys - some physical and metallurgical aspects, J. Magn. Magn. Mater. 19, 190-207 (1980). DOI: https://doi.org/10.1016/0304-8853(80)90592-2
  • [23] S. Hasani, M. Shamaniana, A. Shafyeia, P. Behjati, J.A. Szpunar, M. Fathi-Moghaddam, Nano/sub-micron crystallization of Fe-Co-7.15V alloy by thermo-mechanical process to improve magnetic properties, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 190, 96-103 (2014). DOI: https://doi.org/10.1016/j.mseb.2014.09.013
  • [24] S. Preston, G.W. Johnson, Effect of grain size and orientation on the initial permeability of 36 wt % Ni-Fe alloys. J. Mater. Sci. 19, 4099-4105 (1984). DOI: https://doi.org/10.1007/bF00980777
  • [25] D.A. Colling, R.G. Aspden, Influence of sulfur on initial permeability of commercial 49% Ni-Fe alloys, J. Appl. Phys. 40, 1571-1572 (1969). DOI: https://doi.org/10.1063/1.1657775
  • [26] S. Hasani, M. Shamanian, A. Shafyei, P. Behjati, M. Nezakat, M. Fathi-Moghaddam, J.A. Szpunar, Influence of annealing treatment on micro/macro-texture and texture dependent magnetic properties in cold rolled FeCo-7.15V alloy, J. Magn. Magn. Mater. 378, 253-260 (2015). DOI: https://doi.org/10.1016/j.jmmm.2014.11.050
  • [27] R.T. Casani, W.A. Klawitter, A.A. Lykens, F.W. Ackermann, Secondary recrystallization in high‐purity 49% Ni‐Fe, J. Appl. Phys. 37, 1202-1204 (1966). DOI: https://doi.org/10.1063/1.1708393
  • [28] M. Stefán, G. Hatta, P. Arató, On the secondary recrystallization and magnetic properties of Fe-Ni alloys, J. Magn. Magn. Mater. 19, 208-210 (1980). DOI: https://doi.org/10.1016/0304-8853(80)90593-4
  • [29] M. Nabialek, B. Jez, K. Jez, K. Bloch, Structural and magnetic properties of the rapid cooled alloys: Fe60Co10Y5 + xZr5-xB20 (where: x = 0 or 2), Rev. Chim. 70, 224-227 (2019). DOI: https://doi.org/10.37358/RC.19.1.6887
  • [30] J. Zbroszczyk, J. Olszewski, W. Ciurzyńska, M. Nabiałek, P. Pawlik, M. Hasiak, A. Łukiewska, K. Perduta, Glass-forming ability and magnetic properties of bulk (or 2, Nb, Ti) alloys, J. Magn. Magn. Mater. 304, e724-e726 (2006). DOI: https://doi.org/10.1016/j.jmmm.2006.02.203
  • [31] K. Błoch, M. Nabiałek, P. Postawa, A.V. Sandu, A. Śliwa, B. Jeż, The magnetisation process of bulk amorphous alloys: Fe36 + xCo36−xY8B20, where: x = 0, 3, 7, or 12, Materials (Basel). 13, 846 (2020). DOI: https://doi.org/10.3390/ma13040846
  • [32] M. Nabiałek, B. Jeż, K. Błoch, J. Gondro, K. Jeż, A.V. Sandu, P. Pietrusiewicz, Relationship between the shape of X-ray diffraction patterns and magnetic properties of bulk amorphous alloys Fe65Nb5Y5 + xHf5-xB20 (where: x = 0, 1,2, 3, 4, 5), J. Alloys Compd. 820, 153420 (2020). DOI: https://doi.org/10.1016/j.jallcom.2019.153420
  • [33] M. Nabiałek, B. Jeż, K. Błoch, The influence of the silicon content on the formation of Fe23B6 metastable phases in Fe65Co11-xB-20SixZr2Hf2 bulk amorphous alloys, Metall. Mater. Trans. A. 51, 4602-4609 (2020). DOI: https://doi.org/10.1007/s11661-020-05894-y
  • [34] K. Jeż, M. Nabiałek, S. Walters, A.V. Sandu, B. Jeż, The influence of Nb and Mo content on the magnetisation process of bulk amorphous alloys based on Fe, Acta Phys. Pol. A. 138, 196-199 (2020). DOI: https://doi.org/10.12693/AphyspolA.138.196
  • [35] R.D. Enoch, A. Winterborn, Magnetic characteristics of a high-permeability Ni-Fe-Cu-Mo alloy, J. Appl. Phys. 18, 1407-1413 (1967). DOI: https://doi.org/10.1088/0508-3443/18/10/306
  • [36] K. Aoyagi, Variations of crystal magnetic anisotropy of Mo-Fe-Ni alloys with heat treatments, Jpn. J. Appl. Phys. 4, 551-556 (1965). DOI: https://doi.org/10.1143/JJAp.4.551
  • [37] L.J. Li, R.W. Shao, Effect of heat treatment on the structure and mechanical properties of the hot-rolling plate of Fe-42% Ni (4J42), Adv. Mater. Res. 194-196, 321-325 (2011). DOI: https://doi.org/10.4028/www.scientific.net/AMR.194-196.321
  • [38] I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev, Grain refinement in aluminum alloy 2219 during ECAP at 250°C, Mater. Sci. Eng. A. 473, 297-305 (2008). DOI: https://doi.org/10.1016/j.msea.2007.04.112
  • [39] C.S. Barrett, Structure of iron after compression, Trans. AIME. 135, 296-326 (1939).
  • [40] A. Rollett, F. Humphreys, G.S. Rohrer, M. Hatherly, Recrystallization and related annealing phenomena: second edition, Elsevier, 2004. DOI: https://doi.org/10.1016/B978-0-08-044164-1.X5000-2
  • [41] R.D. Doherty, Recrystallization and texture. Prog. Mater. Sci. 42, 39-58 (1997). DOI: https://doi.org/10.1016/s0079-6425(97)00007-8
  • [42] P.A. Beck, Annealing of cold worked metals, Adv. Phys. 3, 245-324 (1954). DOI: https://doi.org/10.1080/00018735400101203
  • [43] M.B. Bever, D.L. Holt, A.L. Titchener, The stored energy of cold work, Prog. Mater. Sci. 17, 5-177 (1973). DOI: https://doi.org/10.1016/0079-6425(73)90001-7
  • [44] F. Adcock, The internal mechanism of cold-work and recrystallization in Cupro-Nickel, J. Inst. Met. 27, 73-92 (1922).
  • [45] P.S. Mathur, W.A. Backofen, Mechanical contributions to the plane-strain deformation and recrystallization textures of aluminum-killed steel, Metall. Trans. 4, 643-651 (1973). DOI: https://doi.org/10.1007/BF02643069
  • [46] G.E. Dieter, Mechanical metallurgy (2001), SI Metr. Ed. (1988).
  • [47] I.L. Dillamore, W.T. Roberts, Rolling textures in f.c.c. and b.c.c. metals, Acta Metall. 12, 281-293 (1964). DOI: https://doi.org/10.1016/0001-6160(64)90204-4
  • [48] R.E. Smallman, D. Green, The dependence of rolling texture on stacking fault energy, Acta Metall. 12, 145-154 (1964). DOI: https://doi.org/10.1016/0001-6160(64)90182-8
  • [49] S. Dey, N. Gayathri, M. Bhattacharya, P. Mukherjee, In Situ XRD Studies of the process dynamics during Annealing in Cold-rolled Copper, Metall. Mater. Trans. A. 47, 6281-6291 (2016). DOI: https://doi.org/10.1007/s11661-016-3768-0
  • [50] A.S. Malin, M. Hatherly, Microstructure of cold-rolled copper, Met. Sci. 13, 463-472 (1979). DOI: https://doi.org/10.1179/030634579790438363
  • [51] M.K. Banerjee, 2.1 Fundamentals of Heat Treating Metals and Alloys, in: Compr. Mater. Finish., Elsevier, 2017: pp. 1-49. DOI: https://doi.org/10.1016/B978-0-12-803581-8.09185-2
  • [52] R.S. Sundar, S.C. Deevi, Soft magnetic FeCo alloys: alloy development, processing, and properties, Int. Mater. Rev. 50, 157-192 (2005). DOI: https://doi.org/10.1179/174328005X14339
  • [53] X. Zhong, L. Huang, F. Liu, Discontinuous dynamic recrystallization mechanism and twinning evolution during hot deformation of incoloy 825, J. Mater. Eng. Perform. 29, 6155-6169 (2020). DOI: https://doi.org/10.1007/s11665-020-05093-1
  • [54] M. Amir, H. Gungunes, A. Baykal, M.A. Almessiere, H. Sözeri, I. Ercan, M. Sertkol, S. Asiri, A. Manikandan, Effect of annealing temperature on magnetic and mössbauer properties of ZnFe2O4 nanoparticles by sol-gel approach, J. Supercond. Nov. Magn. 31, 3347-3356 (2018). DOI: https://doi.org/10.1007/s10948-018-4610-2
  • [55] S. Asiri, M. Sertkol, H. Güngüneş, M. Amir, A. Manikandan, İ. Ercan, A. Baykal, The temperature effect on magnetic properties of NiFe2O4 nanoparticles, J. Inorg. Organomet. Polym. Mater. 28, 1587-1597 (2018). DOI: https://doi.org/10.1007/s10904-018-0813-z
  • [56] J. Huber, M. Hatherly, Nucleation of recrystallized grains in heavily cold-worked α-brass, Met. Sci. 13, 665-669 (1979). DOI: https://doi.org/10.1179/030634579790434268
  • [57] R.K. Ray, W.B. Hutchinson, B.J. Duggan, A study of the nucleation of recrystallization using HVEM, Acta Metall. 23 (1975) 831-840. DOI: https://doi.org/10.1016/0001-6160(75)90199-6
  • [58] R.L. Fullman, J.C. Fisher, Formation of Annealing Twins during grain growth, J. Appl. Phys. 22, 1350-1355 (1951). DOI: https://doi.org/10.1063/1.1699865
  • [59] W.W. Mullins, The effect of thermal grooving on grain boundary motion, Acta Metall. 6, 414-427 (1958). DOI: https://doi.org/10.1016/0001-6160(58)90020-8
  • [60] R.E. Reed-Hill, R. Abbaschian, R. Abbaschian, Physical metallurgy principles, Van Nostrand New York, 1973.
  • [61] T. Hosoda, Microstructure and texture evolution in cold-rolled and annealed alloy MA-956, Colorado School of Mines, 2014. https://www.proquest.com/docview/1609182152
  • [62] S. Hasani, M. Shamanian, A. Shafyei, M. Nezakat, H. Mostaan, J.A. Szpunar, Effect of recrystallization and phase transitions on the mechanical properties of semihard magnetic FeCo-7.15 V alloy during the thermomechanical process, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48, 1903-1909 (2017). DOI: https://doi.org/10.1007/s11661-017-3954-8
  • [63] S. Hasani, M. Shamanian, A. Shafyei, P. Behjati, H. Mostaan, P. Sahu, J.A. Szpunar, Electron microscopy study on grain boundary characterizations of Fe-Co-V alloy during annealing, vacuum 114, 1-5 (2015). DOI: https://doi.org/10.1016/j.vacuum.2014.12.025
  • [64] S. Hasani, A. Shafyei, M. Nezakat, H. Mostaan, P. Behjati, P. Sahu, The effect of the order-disorder transition on the electrical, magnetic and mechanical properties of vicalloy I, Intermetallics 81, 73-79 (2017). DOI: https://doi.org/10.1016/j.intermet.2017.02.027
  • [65] M.R. Kamali, A.R. Mashreghi, L.P. Karjalainen, S. Hasani, V. Javaheri, S. Saukko, J. Kömi, Reobservations on ordering, precipitation and polymorphic phase transformation phenomena during annealing of a severely cold rolled magnetic Fe-Co-10V alloy, Materialia. 12, 100765 (2020). DOI: https://doi.org/10.1016/j.mtla.2020.100765
  • [66] M.R. Kamali, L.P. Karjalainen, A.R. Mashregi, S. Hasani, V. Javaheri, J. Kömi, Reobservations of ferrite recrystallization in a cold-rolled ordered Fe-50Co-10V alloy using the EBSD method, Mater. Charact. 158, 109962 (2019). DOI: https://doi.org/10.1016/j.matchar.2019.109962
  • [67] R.J. Willey, Formation of the K-state in a ni-Fe-Mo-Cu alloy, J. Mater. Sci. 13, 871-875 (1978). DOI: https://doi.org/10.1007/BF00570526
  • [68] I.V. Vernyhora, V.A. Tatarenko, S.M. Bokoch, Thermodynamics of fcc-Ni-Fe alloys in a static applied magnetic field, ISRN Thermodyn. 2012, 1-11 (2012). DOI: https://doi.org/10.5402/2012/917836
  • [69] A. Vidoz, D. Lazarević, R. Cahn, Strain-ageing of ordering alloys, with special reference to the nickel-iron system, Acta Metall. 11, 17-33 (1963). DOI: https://doi.org/10.1016/0001-6160(63)90121-4
  • [70] R.C. Jackson, E.W. Lee, Magnetic and electrical properties of 77-14-5-4 wt % Ni-Fe-Cu-Mo and related alloys, J. Mater. Sci. 1, 362-366 (1966). DOI: https://doi.org/10.1007/bF00549934
  • [71] H. Mostaan, M. Shamanian, S.M. Monirvaghefi, P. Behjati, S. Hasani, M. Fathi Moghaddam, M. Amiri, J.A. Szpunar, Analysis and characterization of microstructural evolutions, mechanical response and fracture mechanism of laser welded Fe-Co-V ultrathin foils, Opt. Laser Technol. 68, 211-219 (2015). DOI: https://doi.org/10.1016/j.optlastec.2014.12.003
  • [72] E. Orowan, Fracture and strength of solids, Reports Prog. Phys. 12, 309 (1949). DOI: https://doi.org/10.1088/0034-4885/12/1/309
  • [73] R.H. Van Stone, T.B. Cox, J.R. Low, J.A. Psioda, Microstructural aspects of fracture by dimpled rupture, Int. Met. Rev. 30, 157-180 (1985). DOI: https://doi.org/10.1179/imtr.1985.30.1.157
  • [74] D.A. Shockey, L. Seaman, K.C. Dao, D.R. Curan, A Computational Fracture Model for SA533, Grade B, Class i Steel Based upon Microfracture Process, EPRI Ductile Fract. Res. Rev. Doc. EPRI NP-701-SR. (1978).
  • [75] A.J. Birkle, R.P. Wei, G.E. Pellissier, Analysis of plain-strain fracture in a series of 0.45C-Ni-Mo steels with different sulfur contents, Trans. ASM. 59, 981 (1966).
  • [76] C.D. Beachem, Electron fractographic studies of mechanical fracture processes in metals, J. Fluids Eng. Trans. ASME. 87, 299-306 (1965). DOI: https://doi.org/10.1115/1.3650544
  • [77] M. Reihanian, F.K. Hadadian, M.H. Paydar, Fabrication of Al-2vol% Al2O3/SiC hybrid composite via accumulative roll bonding (ARB): An investigation of the microstructure and mechanical properties, Mater. Sci. Eng. A. 607, 188-196 (2014). DOI: https://doi.org/10.1016/j.msea.2014.04.013
  • [78] R.W. Hertzberg, R.P. Vinci, J.L. Hertzberg, Deformation and fracture mechanics of engineering materials, John Wiley & Sons, 2020.
  • [79] R.H. Yu, S. Basu, Y. Zhang, A. Parvizi-Majidi, J.Q. Xiao, Pinning effect of the grain boundaries on magnetic domain wall in FeCo-based magnetic alloys, J. Appl. Phys. 85, 6655 (1999). DOI: https://doi.org/10.1063/1.370175
  • [80] R.H. Yu, S. Basu, L. Ren, Y. Zhang, A. Parvizi-Majidi, K.M. Unruh, J.Q. Xiao, High Temperature Soft Magnetic Materials: FeCo Alloys and Composites, IEEE Trans. Magn. 36, 3388-3393 (2000). DOI: https://doi.org/10.1109/20.9088099
  • [81] T. Sourmail, Evolution of strength and coercivity during annealing of FeCo based alloys, Scr. Mater. 51, 589-591 (2004). DOI: https://doi.org/10.1016/j.scriptamat.2004.05.028
  • [82] B. Nabi, A.-L. Helbert, F. Brisset, G. André, T. Waeckerlé, T. Baudin, Effect of recrystallization and degree of order on the magnetic and mechanical properties of soft magnetic FeCo-2V alloy, Mater. Sci. Eng. A. 578, 215-221 (2013). DOI: https://doi.org/10.1016/j.msea.2013.04.066
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5f87b9f-31c2-4977-8ddf-a794a3eac904
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.