PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biological treatment of hydrogen sulfide in an airlift bioreactor with direct gas injection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bioconversion of H2S into elemental sulfur has been investigated using an airlift bioreactor with direct injection of the gas into the bioreactor. Almost complete removal of H2S has been achieved at its inlet concentrations lower than 25 000 ppm. Maximum bioconversion capacity of ca 111.3 g/(m3·h) and up to 93.5% conversion of the inlet sulfide to elemental sulfur was obtained. To further improve the bioreactor performance, factors influencing mass transfer and biological activity should be investigated in future studies.
Rocznik
Strony
131--142
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Department of Industrial Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
  • Department of Occupational Health and Air Pollution, High Institute of Public Health, Alexandria University, Alexandria, Egypt
  • Department of Chemical and Material Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • Center of Excellence for Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
  • Department of Chemical and Material Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
Bibliografia
  • [1] OYARZÚN P., ARANCIBIA F., CANALES C., AROCA G.E., Biofiltration of high concentration of hydrogen sulphide using Thiobacillus Thioparus, Process Biochem., 2003, 39, 165.
  • [2] KIM J.H., RENE E.R., PARK H.S., Biological oxidation of hydrogen sulfide under steady and transient state conditions in an immobilized cell biofilter, Bioresour., Technol., 2008, 99, 583.
  • [3] POTIVICHAYANON S., POKETHITIYOOK P., KRUATRACHUE M., Hydrogen sulfide removal by a novel fixedfilm bioscrubber system, Process Biochem., 2006, 41, 708.
  • [4] FILHO J.L.R.P., SADER L.T., DAMIANOVIC M.H.R.Z., FORESTI E., SILVA E.L., Performance evaluation of packing materials in the removal of hydrogen sulphide in gas-phase biofilters. Polyurethane foam, sugarcane bagasse, and coconut fibre, Chem. Eng. J., 2008, 158, 441.
  • [5] RAMÍREZ M., GÓMEZ J.M., AROCA G., CANTERO D., Removal of hydrogen sulfide by immobilized thiobacillus thioparus in a biotrickling filter packed with polyurethane foam, Bioresour. Technol., 2009, 100, 4989.
  • [6] FORTUNY M., BAEZA J.A., GAMISANS X., CASAS C., LAFUENTE J., DESHUSSES M.A., GABRIEL D., Biological sweetening of energy gases mimics in biotrickling filters, Chemosphere, 2008, 71, 10.
  • [7] PARK D., LEE D.S., JOUNG J.Y., PARK J.M., Comparison of different bioreactor systems for indirect H2S removal using iron-oxidizing bacteria, Process Biochem., 2005, 40, 1461.
  • [8] KIM K.S., CHUNG W.J., OH Y.S., Dynamic behavior of compost biofilters during periods of starvation and fluctuating hydrogen sulfide loadings, J. Environ. Sci. Health, 2004, A39, 299.
  • [9] GABRIEL D., DESHUSSES M.A., Performance of a full-scale biotrickling filter treating H2S at a gas contact time of 1.6 to 2.2 seconds, Environ. Prog., 2003, 22, 111.
  • [10] KIM S., DESHUSSES M.A., Development and experimental validation of a conceptual model for biotrckling filtration of H2S, Environ. Prog., 2003, 22, 119.
  • [11] PARK D.H., CHA J.M., RYU H.W., LEE G.W., YU E.Y., RHEE J.I., PARK J.J., KIM S.W., LEE I.W., JOE Y.I., RYU Y.W., HUR B.K., PARK J.K., PARK, K., Hydrogen sulfide removal utilizing immobilized Thiobacillus sp. IW with Ca-alginate bead, Biochem. Eng. J., 2002, 11, 167.
  • [12] SHINABE K., OKETANI S., OCHI T., KANCHANATAWEE S., MATSUMURA M., Characteristics of hydrogen sulfide removal in a carrier-packed biological deodorization system, Biochem. Eng. J., 2000, 5, 209.
  • [13] DUAN H., YAN R., CHOON L., KOE C., WANG X., Combined effect of adsorption and biodegradation of biological activated carbon on H2S biotrickling filtration, Chemosphere, 2007, 66, 1684.
  • [14] DUAN H., KOE L.C.C., YAN R., CHEN X., Biological treatment of H2S using pellet activated carbon as a carrier of microorganisms in a biofilter, Water Res., 2006, 40, 2629.
  • [15] FERRERA I., SANCHEZ O., MAS J., A new non-aerated illuminated packed-column reactor for the development of sulfide-oxidizing biofilms, Appl. Microbiol. Biotechnol., 2004, 64, 659.
  • [16] HENSHAW P.F., ZHU W., Biological conversion of hydrogen sulphide to elemental sulphur in a fixed- -film continuous flow photo-reactor, Water Res., 2001, 35, 3605.
  • [17] EBRAHIMI S., MORALES F.J.F., KLEEREBEZEM R., HEIJNEN J.J., VAN LOOSDRECHT M.C.M., High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material, Biotechnol. Bioeng., 2005, 90, 462.
  • [18] SON H.J., LEE J.H., H2S removal with an immobilized cell hybrid reactor, Process Biochem., 2005, 40, 2197.
  • [19] PAGELLA C., DE FAVERI D.M., H2S gas treatment by iron bioprocess, Chem. Eng. Sci., 2000, 55, 2185.
  • [20] RATTANAPAN C., BOONSAWANG P., KANTACHOTE D., Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater, Bioresour. Technol., 2009, 100, 125.
  • [21] BUISMAN C.J.N., GERAATS B.G., IJSPEERT P., LETTINGA G., Optimization of sulphur production in a biotechnological sulphide-removing reactor, Biotechnol. Bioeng., 1990, 35, 50.
  • [22] KRISHNAKUMAR B., MAJUMDAR S., MANILAL V.B., HARIDAS A., Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR), Water Res., 2005, 39, 639.
  • [23] LOHWACHARIN J., ANNACHHATRE A.P., Biological sulfide oxidation in an airlift bioreactor, Bioresour. Technol., 2010, 101, 2114.
  • [24] YAZDIAN F., SHOJAOSADATI S.A., NOSRATI M., PESARAN HAJIABBAS M., VASHEGHANI-FARAHANI E., Investigation of gas properties, design, and operational parameters on hydrodynamic characteristics, mass transfer, and biomass production from natural gas in an external airlift loop bioreactor, Chem. Eng. Sci., 2009, 64, 2455.
  • [25] CHOI K.H., Effects of liquid level above downcomer on hydrodynamic characteristics of external-loop airlift reactor, Chem. Eng. Commun., 2007, 194, 1215.
  • [26] MOJARRAD MOGHANLOO G.M., FATEHIFAR E., SAEDY S., AGHAEIFAR Z., ABBASNEZHAD H., Biological oxidation of hydrogen sulfide in mineral media using a biofilm airlift suspension reactor, Bioresour. Technol., 2010, 101, 8330.
  • [27] APHA, Standard Methods for the Examination of Water and Wastewater, 21st Ed., American Public Health Association, Washington DC, 2005.
  • [28] SATAKE H., HISANO T., IKEDA S., The rapid determination of sulfide, thiosulfate, and polysulfide in the lixiviation water of blast-furnace slag by means of argentometric potentiometric titration, Bull. Chem. Soc. Jpn., 1981, 54, 1968.
  • [29] ZYTOON M.A., EL-SHAZLY A.H., NOWEIR M.H., AL-ZAHRANI A.A., Quantitative safety analysis of a lab-scale bioreactor for hydrogen sulfide biotreatment using fault tree analysis, Process Saf. Prog., 2013, 32, 376.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5f676ba-126d-4e53-967c-114dbd85fe41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.