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1. Introduction  

Differential operators in the bundles of symmetric tensors and symmetric ten-

sors with values in the tangent bundle on a Riemannian manifold are more and 

more often a subject of interest of contemporary geometry. Recently, such opera-

tors were investigated e.g. in [1], by Balcerzak and Pierzchalski in the category of 

Lie algebroids or, in [2], by Stepanov and Mikes, in the case of one tensors where 

some spectral properties of the Yano rough Laplacian - the operator similar to the 

one considered here Sampson Laplacian ∆
s
  - were analyzed. It is also worth notic-

ing a very recent paper [3], by Heil, Moroianu and Semmelmann where some ellip-

tic operators in the bundle of symmetric forms were investigated in the context of 

Killing and conformal Killing tensors. In this context the symmetric tensors were 

also investigated earlier in [4].  

The operators of gradient and the divergence on symmetric tensors were inves-

tigated in detail in the author’s recent PhD dissertation [5]. Their boundary behav-

ior when M is a manifold with a nonempty boundary was investigated in [6]. 

One of the most important operators acting on symmetric tensors is the first  

order linear operator d
s
 (defined by (7)) being the symmetric part of the Levi-Civita 

covariant derivative ∇. In addition to d
s
, we consider three other zero order opera-

tors: a (defined by (13)) and two traces Tr and tr (defined by (11) and (12)), respec-
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tively). It is interesting that linear combinations of the mentioned four operators 

and their adjoints led to several interesting operators. Their adjoints led to several 

interesting operators.  

First of all, let us consider the two first order differential operators grad =  

= a d
s
 − d

s
 a and div = Tr d

s
 − d

s
 Tr. They are adjointed - each to the other - with 

respect to the global (integral) scalar product on M  (cf. Proposition 2.5). They re-

duce to the usual gradient when acting on functions and the usual divergence when 

acting on vector fields. 

The main result of our paper is Theorem 2.3. It states that in fact our operator 

div grad is the negative of the classical Bochner-Laplace operator: −tr∇∇. We also 

consider the operator ∆
s
  = d

s*
 d

s 
− d

s
 d

s*
 which was considered first by  

J.H. Sampson and investigated in the context of a Chern theorem in [7]. Both 

−tr∇∇ and ∆
s
 are second order differential operators. They are both strongly ellip-

tic in the sense that their symbols are positively defined (cf. [6]). 

It is interesting that, similar to analogous operators in the case of skew-

symmetric tensors, the difference between the negative of div grad and ∆
s
 is a zero 

order operator (tensor) depending on the curvature, i.e. a Weitzenböck type formu-

la holds in the bundle of symmetric tensors (cf. Theorem 3.1). On the other hand, 

the formula relating div grad to the Bochner Laplacian in Theorem 2.3 gives an 

equivalence of our Weitzenböck type formula (21) to the classical Weitzenböck 

formula (22) proved e.g. in [5] or in [7]. 

Finally, we discuss some possible applications in geometry, physics and tomog-

raphy. 

The author would like to express her gratitude to Antoni Pierzchalski for sug-

gesting the problem and discussions.  

2. Natural differential operators in the bundle of symmetric tensors 

All the objects and morphisms are assumed to be smooth, i.e. of class C
∞
.  

Let (M,g) be an oriented Riemannian manifold of dimension n. Denote by 

C
∞
(M) the ring of smooth functions on M. Let T = TM and T

* 
= T*M be the tangent 

and cotangent bundles, respectively. Denote by T
*k 

= T*
k
M the bundle of k-tensors 

on M and by S
k 
= S

k
M its subbundle of k-symmetric tensors (k-forms). For any bun-

dle E over M denote by C
∞
(E)  the C

∞
(M) - module of sections of E.  

For any p∈M, g defines a scalar product in Tp: 

 〈·,·〉 = gp(·, ·) : Tp × Tp→R. 

Extend 〈·,·〉 in a natural way to the fibers of the cotangent bundle and next to the 

fibers of any tensor bundle on M. In particular, the bundle of symmetric tensors S
k
 

as a subbundle of T
*k

 inherits this scalar product. Consider also in this bundle  

another scalar product   
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 〈·|·〉 =1/k! 〈·,·〉. (1) 

Let ∇ be the Levi-Civita covariant derivative of the metric g on M. Trasmit ∇ 

in a natural way from the tangent bundle T to the dual bundle T
*
(=S

1
) and next to 

any tensor bundle by the Leibniz rule, in particular to the bundle S
k
. The extended 

connection is denoted by the same symbol ∇.  

If, for φ∈ C
∞
(S

k
) we use the convention:   

 (∇φ)(X,X1,…Xk) = (∇Xφ)(X1,…Xk), (2) 

the obtained covariant derivative may be treated as the map:  

 ∇:C
∞
(S

k
)→ C

∞
(T

*
⊗S

k
) (3) 

For any 1 ≤ i,j,r ≤ n and any local frame e1,…,en on M define the Christoffel 

symbols Γ
i
jr by 

 ∇ejer = ∑i=1,…,nΓ
i
jrei.  

One can easily prove that if e1,…,en is a local orthonormal frame on M then for 

any 1 ≤ i,j,r ≤ n 

 Γ
i
jr = −Γ

r
ji. (4) 

If E is any vector bundle over M and 〈·,·〉 is any scalar product in E, the global 

scalar product (·,·) in the space of sections of E can be defined by  

 (·,·) = ∫ M〈·,·〉 ΩM , (5) 

where ΩM is the volume form on M defined by the orientation and the metric  

g (cf. [8]). 

The global scalar product is then well defined only for such pairs of sections 

that the integral exists and is finite. This is always the case when, e.g. at least one 

of the sections is of compact support. 

That way, for the bundle S
k
, we have two global scalar products (·,·) and (·|·). 

They (cf. (1)) are related by  

 (·|·) = 1/k! (·,·). (6) 

Define the operator of symmetric derivative  

d
s
: C∞(S

k
)→ C∞(S

k+1
) 

by  

 d
s
 = (k+1)Sym ∇, (7) 

where Sym: T
*k
→ T

*k is the linear operation of symmetrization:  
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 (Sym ψ)(X1,…,Xk) =1\k!∑σψ(Xσ(1),…Xσ(k)), 

X1,…,Xk∈T. 
A local expression for the symmetric derivative by the covariant derivative is 

the following  

Proposition 2.1.  Let e1,…,en be a local frame of sections of T and let e1
*
,…,en

*
 be 

the dual frame then  

 d
s
φ = ∑j=1,…,n ej

*
⊙∇ejφ, 

for φ∈C∞(S
k
). 

Proof. The proof is analogous to that one for local expression of the exterior deriv-

ative in the bundle of skew-symmetric tensors given e.g. in [9]. □ 

Define the operator ιX of substitution of X∈C∞(T) as the mapping  

ιX: C
∞
(S

k
)→ (S

k-1
) of form  

 (ιXφ)(X1,…,Xk-1) = φ(X,X1,…,Xk-1), for k > 0 

and  

 ιX φ = 0, for k = 0 

where X1,…,Xk-1∈ C
∞(T), φ∈ C

∞
(S

k
). 

One can also easily prove that, for X,Y∈C∞(T).  

 ιX∇Y = ∇Y ιX − ι∇xY (8) 

Extend the symmetric derivative to  

d
s
: C

∞
(S

k
⊗T)→ C

∞
(S

k+1
⊗T) 

by the formula  

 d
s
(φ⊗X) = d

s
φ⊗X  + φ⊙∇X, (9) 

for φ⊗X∈C
∞
(S

k
⊗T) where ∇X is treated as 1-form with values in T. Locally this 

form can be given by ∇X=∑j=1,…,n ej
*
⊗∇ejX. 

In analogy to Proposition 2.1, one can prove  

Proposition 2.2.  Let e1,…,en be a local frame of sections of T and let e1
*
,…,en

*
 be 

the dual frame then 

 d
s
Φ = ∑j=1,…,n ej

*
⊙∇ejΦ (10) 

for Φ∈C∞(S
k
⊗T). 

Define now two trace operators. First, the trace operator  
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 Tr: C
∞
(T

*k
⊗T)→ C

∞
(T

*k-1
) 

acting on vector forms φ⊗X∈C
∞
(T

*k
⊗T) by  

 Tr(φ⊗X) = ιXφ, for k ≥ 0. (11) 

Next, the trace operator  

 tr: C
∞
(T

*k
)→ C

∞
(T

*k-2
) 
 

defined by the metric g and acting on scalar forms φ∈C
∞
(T

*k
) by  

 trφ = ∑i=1,…,n ιeiιei φ, for k ≥ 0. (12) 

Here e1,…,en is an orthonormal frame of T. 

The right hand side of (12) is independent of the choice of frame. We will use 

the same symbols for the restrictions of operators  Tr  and  tr  to the subbundles 

S
k
⊗T and S

k
, of the bundles T

*k
 and T

*k
⊗T, respectively. 

Now, we are ready to get the shape of operators formally adjoint to d
s 
. 

Theorem 2.1. With respect to the global scalar product (·|·) the operator d
s*
: 

C
∞
(S

k+1
)→ C

∞
(S

k
) formally adjoint to d

s
: C

∞
(S

k
)→ C

∞
(S

k+1
) is of form 

                             d
s* 

= −tr∇|C
∞
(S
k+1

). 

Proof. See e.g. [6]. □  

Theorem 2.2. With respect to the global scalar product (·|·) the operator  d
s * : 

C
∞
(S

k+1
⊗T) → C

∞
(S

k
⊗T) formally adjoint to d

s
 : C∞

(S
k
⊗T)→ C

∞
(S

k+1
⊗T)  is of 

form  

  d
s* 

= −tr∇| C
∞
(S
k+1

⊗T)  . 

Proof. See e.g. [5]. □ 

Next, for k = 0,1,… define the operator a: C
∞
(S

k
) → C

∞
(S

k-1
⊗T ) by  

   aφ = ∑i=1,…,n ιei φ⊗ei    (13) 

where e1,…,en is an orthonormal basis in T and φ∈ C
∞
(S

k
). 

One can easily see that the definition of a is independent of the choice of  

orthonormal frame.  

Define now two differential operators: the gradient acting on symmetric tensors 

of any degree and the divergence acting on vector valued symmetric tensors of any 

degree. 

The gradient is the operator  

 grad: C
∞
(S

k
)→ C

∞
(S

k
⊗T) 



A. Kimaczyńska 32 

defined by  

 grad = a d
s
 �	d

s 
a. (14) 

Its local shape is expressed by 

Proposition 2.3. Let e1,…,en be a local orthonormal frame of sections of T then lo-

cally  

 grad φ = ∑i=1,…,n∇ei  φ⊗ei (15) 

for φ∈C
∞
(S

k
).  

Proof. See [5]. □ 

The divergence is the operator  

 div: C
∞
(S

k
⊗T)→ C

∞
(S

k
) 

defined by  

 div = Tr d
s 
−  d

s 
Tr (16) 

Its local shape is expressed by 

Proposition 2.4.  For φ⊗X ∈ C
∞
(S

k
⊗T) we have  

 div(φ⊗X) = ∇Xφ + φ div X (17) 

where in any local orthonormal basis e1,…,en the  div X is defined locally by  

 div X = ∑j=1,…,n 〈ej, ∇ej X〉. 

Proof. See [5]. □ 

Proposition 2.5.  The differential operators  −grad: C
∞
(S

k
)→ C

∞
(S

k
⊗T) and  

div:C
∞
(S

k
⊗T)→ C

∞
(S

k
) are formally adjoint (each to the other) with respect to the 

global scalar product (·|·).  
 

Proof. See [6]. □ 

Consider now the composition of our two operators div and grad, i.e. the second 

order operator  

 div grad: C
∞
(S

k
)→ C

∞
(S

k
).  

For any X,Y∈C
∞

(T) define the second order derivative ∇
2
X,Y  by 

 ∇
2
X,Y = ∇X∇Y −∇∇xY (18) 

The classical Bochner-Laplace operator − tr∇∇  is related to the second order 

derivative:  
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Proposition 2.6.  In any local orthonormal frame e1,…,en on M  

 − tr∇∇  = −∑i=1,…,n∇
2
ei,ei  .  

Proof. See [5]. □ 

Let us prove the main result of the paper saying that on the symmetric tensors 

the operator  div  grad  coincides with the negative of the classical Bochner-Laplace 

operator: 
 

Theorem 2.3.   

  div  grad = tr∇∇. 

Proof. Let φ∈C
∞
(S

k
). By Proposition 2.3 and Proposition 2.4 we have locally 

 div grad φ = div(∑i=1,…,n ∇ei φ⊗ei)  

 = ∑i=1,…,n(∇ei∇ei φ + ∇ei φ(∑j=1,…,n〈ej, ∇ejei〉)), 

where e1,…,en is a local orthonormal frame on M. So, by the definition of Christof-

fel symbols and (4) we can continue sequentially with  

∑i=1,…,n∇ei∇ei φ +∑i,j=1,…,n Γ
j
ji∇ei φ  

=  ∑i=1,…,n∇ei∇ei φ −∑i,j=1,…,n Γ
i
jj∇ei φ  

=  ∑j=1,…,n∇ej∇ejφ −∑,j=1,…,n∇∇ejejφ. 

By (18) and Proposition 2.6 we get the assertion. □ 

3. Weitzenböck formula for div grad operator 

Let us start with the following: 

Definition 3.1.  The Laplace operator ∆
s
: C

∞
(S

k
)→ C

∞
(S

k
) is the second order 

differential operator of form:  

 ∆
s
 = d

s*
 d

s
 − d

s
 d

s*
. (19) 

The operator ∆
s
 was introduced first by Sampson in [7]. Recently this operator 

has been investigated in the category of Lee algebroids in [1]. For k = 1 in [2]  

a similar operator: the Yano rough Laplacian was analyzed in a context of its spec-

tral properties. Some elliptic operators in the bundle of symmetric forms were also 

investigated in [3] in a context of so-called conformal Killing tensors.  

Notice the contrast (in the sign of summands) to the case of the analogous  

Laplace operator acting in the bundle of skew-symmetric tensors: ∆ = d
*
 d + d d

*
, 

where d is the exterior derivative, or even to the so-called weighted Laplacian:  

∆ab = ad
*
 d + bd d

*
 with constants a and b necessarily positive (investigated e.g.  

in [10]). 
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The aim of this chapter is the discussion of a Weitzenböck type formula. In our 

case, the formula will relate two differential operators on symmetric forms: 

− div  grad  and the Laplace operator defined in (19). Their difference is a zero order 

operator (tensor) depending on the curvature operator. 

The curvature operator is the zero order operator RX,Y defined by  

 RX,Y = ∇
2
X,Y −∇ 

2
Y,X , 

for any X,Y∈C
∞
(T). 

The Ricci type tensor ℜ is locally defined by  

      ℜ = ∑i,j=1,…,n ej
*
⊙ιei Rei,ej, (20) 

where e1,…,en is a local orthonormal frame on M and e1
*
,…,en

*
 is the dual frame. 

One can easily see that the right hand side of (20) is independent of the choice 

of frames. 

Now we are ready to prove the following Weitzenböck type formula for our op-

erator − div  grad . 

Theorem 3.1  (Weitzenböck type formula) The following formula holds  

 ∆
s
 = − div grad  − ℜ. (21)

 

Proof. Let e1,…,en be a local orthonormal frame on M and e1
*
,…,en

*
 be the dual 

frame. By the definition of ∆
s
, the shape of  d

s*
 and d

s
, (8) and (4) we have sequen-

tially: 

 ∆
s
φ = d

s*
 d

s
 φ− d

s
 d

s*
φ = − tr∇(∑j=1,…,n ej

*
⊙∇ejφ) + ∑j=1,…,nej

*
⊙∇ej tr∇φ 

= −∑i,j=1,…,n ιei∇ei  (ej
*
⊙∇ejφ) + ∑i,j=1,…,n ej

*
⊙∇ej ιei∇ei φ 

= −∑i,j=1,…,n ιei(∇ei  ej
*
⊙∇ejφ) − ∑i,j=1,…,n ιei(ej

*
⊙∇ei∇ejφ) 

+ ∑i,j=1,…,n ej
*
⊙ιei∇ej∇ei φ + ∑i,j=1,…,n ej

*
⊙ι∇ejei∇ei φ 

= −∑i,j=1,…,n ιei∇ei  ej
*
⊙∇ejφ − ∑i,j=1,…,n∇ei  ej

*
⊙ιei∇ejφ 

−∑i,j=1,…,n ιeiej
*
⊙∇ei∇ejφ − ∑i,j=1,…,n ej

*
⊙ιei∇ei∇ejφ 

+ ∑i,j=1,…,n ej
*
⊙ιei∇ej∇ei φ + ∑i,j,r=1,…,n ej

*
⊙Γ

r
jiιer∇ei φ 

= −∑i,j,r=1,…,n Γ
r
ijιeier

*
⊙∇ejφ − ∑i,j,r=1,…,n Γ

r
ijer

*
⊙ιei∇ejφ 

−∑i,j=1,…,n δ
i
j∇ei∇ejφ − ∑i,j=1,…,n ej

*
⊙ιei∇ei∇ejφ 

+ ∑i,j=1,…,n ej
*
⊙ιei∇ej∇ei φ − ∑i,j,r=1,…,n ej

*
⊙Γ

i
jrιer∇ei φ 

= −∑i,j,r=1,…,n Γ
r
ijδ

i
r∇ejφ + ∑i,j,r=1,…,n Γ

j
irer

*
⊙ιei∇ejφ 

−∑i=1,…,n ∇ei∇eiφ − ∑i,j=1,…,n ej
*
⊙ιei∇ei∇ejφ 

+ ∑i,j=1,…,n ej
*
⊙ιei∇ej∇ei φ − ∑j,r=1,…,n ej

*
⊙ιer∇∇ejer φ 

= −∑i,j,=1,…,n Γ
i
ij∇ejφ + ∑i,r=1,…,n er

*
⊙ιei∇∇eierφ 

−∑i=1,…,n ∇ei∇eiφ − ∑i,j=1,…,n ej
*
⊙ιei∇ei∇ejφ 

+ ∑i,j=1,…,n ej
*
⊙ιei∇ej∇ei φ − ∑j,r=1,…,n ej

*
⊙ιer∇∇ejer φ 
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= ∑i,j=1,…,n Γ
j
ii∇ejφ −∑i,=1,…,n ∇ei∇eiφ 

− ∑i,j=1,…,n ej
*
⊙ιei(∇ei∇ejφ −  ∇∇eiejφ) 

+ ∑i,j=1,…,n ej
*
⊙ιei(∇ej∇ei φ − ∇∇ejei φ) 

= − ∑i,=1,…,n (∇ei∇eiφ − ∇∇eieiφ) 

− ∑i,j=1,…,n ej
*
⊙ιei(∇ei∇ejφ −  ∇∇eiejφ) 

+ ∑i,j=1,…,n ej
*
⊙ιei(∇ej∇ei φ − ∇∇ejei φ). 

 

By Proposition 2.6, Theorem 2.3, (18), the definition of curvature and (20) we get 

the assertion. □ 

Let us terminate the section with the remark that in the light of Theorem 2.3 

our formula (21) is equivalent to the following classical Weitzenböck formula in 

the bundle of symmetric tensors on a Riemannian manifold 

 ∆
s
 = − tr∇∇ − ℜ (22) 

where ℜ is Ricci type tensor defined in (20).  

A proof of the classical Weitzenböck formula in form (22) can be find e.g. in 

[5] or [1]. 

4. Conclusions 

The linear combinations of operators d
s
 (defined by (7)), a (defined by (13)) and 

two traces  Tr  and  tr  (defined by (11) and (12)), respectively) and their adjoins led 

to several interesting operators. The operators considered here are grad, div, or the 

important operators − tr∇∇  or ∆
s
. These operators, of course, do not complete the 

list of operators that can be studied. The possible examples are operators that arise 

by the process of removing the traces like the Ahlfors operator investigated in [11] 

or the conformal Killing operator in the bundle of symmetric tensors considered in 

[4] or [3]. We are going to continue investigation in this direction in a subsequent 

paper. 

Finally notice that the Weitzenböck type formula (21) relates two differential 

operators on symmetric forms: − div  grad  and the Laplace operator. The geometric 

importance of the formula comes from the fact that the difference between these 

second order operators is an operator of order zero: the Ricci type tensor R and that 

this tensor depends essentially on the curvature of M. In some particular cases of 

manifolds with the defined Ricci form R, this may be applied (with use of the clas-

sical Bochner technique) to determinate some geometrically important objects like 

conformal or harmonic tensor fields on a given manifold. The Killing, conformal 

Killing and trace free conformal Killing tensor, that constitute a subclass of the 

class of symmetric tensors considered in our paper, have an application in various 

problems of geometry, physics and tomography (see eg. [3, 12, 13]). 
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