PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dependence of tissue inhomogeneity correction factors on photon-beam energy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Commissioning of the treatment-planning system includes the accuracy of dose calculations in the inhomogeneous absorber. Several results of measurements with regard to inhomogeneity correction factors (CFs) have been published. However, the dependence of CFs on photon-beam energy may preclude such results from being applied to the photon beams of general users. Purpose: The aim of this study was to assess the dependence of CFs on the photon-beam energy. Materials and methods: CFs were calculated by the Batho method for several slab geometries comprised of concentrations of lung tissue and water of 0.25 and 1.00 g/cm3, respectively. The CFs were calculated at 6 MV (TPR10 = 0.67 ± k * 0.01) and 15 MV (TPR10 = 0.76 ± k * 0.01) where k = –3, –2, –1, 0, 1, 2, 3. All calculations were performed in the region where a charged-particle equilibrium exists. Results: Changes in CFs of less than 2% were observed across the considered energy ranges. With a change in TPR20,10 of 0.01, both at 6 and 15 MV at a depth of 5 cm below the lung; and lung thicknesses of 3, 5 and 8 cm over a fi eld surface area of 10 × 10 cm2, the change in CF never exceeded 2.4%. The dependences of changes in CFs in terms of TPR20,10 were 1.74% and 1.20% for fi eld surface areas of 5 × 5 cm2 and 20 × 20 cm2, respectively. A comparison of 42 linear accelerators (LINACs) exhibiting 6 MV and 15 MV of energy installed in Poland showed that the maximum differences in terms of TPR20,10 at 6 MV and 15 MV were 4.2% and 2.2%, respectively. Conclusion: A linear dependence of CFs on energy was observed. According to observations, the smaller the surface area of the fi eld and deeper the point of interest below the lung, the more dependent CFs are on energy.
Czasopismo
Rocznik
Strony
3--7
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Faculty of Physics University of Warsaw Ludwika Pasteura 5, 02-093 Warsaw, Poland
  • Department of Medical Physics Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology Roentgena 5, 02-781 Warsaw, Poland
  • Department of Medical Physics Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology Roentgena 5, 02-781 Warsaw, Poland
Bibliografia
  • 1. Papanikolaou, N., Battista, J. J., Boyer, A. L., Kappas, C., Klein, E., Mackie, T. R., Sharpe, M., & Van Dyk, J. (2004). Tissue inhomogeneity corrections for megavoltage photon beams. Madison WI: Medical Physics Publishing. (AAPM Report No. 85).
  • 2. Das, I. J., Ding, G. X., & Ahnesjö, A. (2008). Small fields: Non-equilibrium radiation dosimetry. Med. Phys., 35(1), 206–215. DOI: 10.1118/1.2815356.
  • 3. Robinson, D. (2008). Inhomogeneity correction and the analytic anisotropic algorithm. J. Appl. Clin. Med. Phys., 9(2), 112–122.
  • 4. Ding, W., Johnston, P. N., Wong, T. P. Y., & Bubb, I. F. (2004). Investigation of photon beam models in heterogeneous media of modern radiotherapy. Australas Phys. Eng. Sci., 27, 39–48. DOI: 10.1007/BF03178375.
  • 5. Carrasco, P., Jornet, N., Duch, M., Weber, L., Ginjaume, M., Endaldo, T., Jurado, D., Ruiz, A., & Ribas, M. (2004). Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium. Med. Phys., 31, 2899–2911. DOI: 10.1118/1.1788932.
  • 6. Krieger, T., & Sauer, O. A. (2005). Monte Carlo versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys. Med. Biol., 50(5), 859–868. DOI: 10.1088/0031-9155/50/5/010.
  • 7. Van Esch, A., Tillikainen, L., Pyykkonen, J., Tenhunen, M., Helminen, H., Siljamaki, S., Alakuijala, J., Paiusco, M., Iori, M., & Huyskens, D. (2006). Testing of the analytical anisotropic algorithm for photon dose calculation. Med. Phys., 33(11), 4130–4148. DOI: 10.1118/1.2358333.
  • 8. Dobler, B., Walter, C., Knopf, A., Fabri, D., Loeschel, R., Polednik, M., Schneider, F., Wenz, F., & Lohr, F. (2006). Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms. Radiat. Oncol., 1, 45(11pp.). DOI: 10.1186/1748-717X-1-45.
  • 9. Vanderstraeten, B., Reynaert, N., Paelinck, L., Madani, I., De Wagter, C., De Gersem, W., De Neve, W., & Thierens, H. (2006). Accuracy of patient dose calculation for lung IMRT: A comparison of Monte Carlo, convolution/superposition and pencil beam computations. Med. Phys., 33(9), 3149–3158. DOI: 10.1118/1.2241992.
  • 10. Gray, A., Oliver, L. D., & Johnston, P. N. (2009). The accuracy of the pencil beam convolution and anisotropic analytical algorithms in predicting the dose effects due to attenuation from immobilization devices large air gaps. Med. Phys., 36(7), 3181–3191. DOI: 10.1118/1.3147204.
  • 11. Rana, S., Rogers, K., Lee, T., Reed, D., & Biggs, C. (2013). Verifi cation and dosimetric impact of Acuros XB algorithm for stereotactic body radiation therapy (SBRT) and RapidArc planning for non-small-cell lung (NSCLC) patients. Int. J. Med. Phys. Clin. Eng. Radiat. Oncol., 2(1), 6–14. DOI: 10.4236/ijmpcero.2013.21002.
  • 12. Han, T., Mourtada, F., Kisling, K., Mikell, J., Followill, D., & Howell, R. (2012). Experimental validation of deterministic Acuros XB algorithm for IMRT and VMAT dose calculations with the Radiological Physics Center’s head and neck phantom. Med. Phys., 39(4), 2193–2202. DOI: 10.1118/1.3692180.
  • 13. Rana, S., & Rogers, K. (2013). Dosimetric evaluation of Acuros XB dose calculation algorithm with measurements in ness for smaller and larger field sizes. Med. Phys., 38, 9–14.
  • 14. Stephen, O. (2013). Dose prediction accuracy of collapsed cone convolution superposition algorithm in a multi-layer inhomogenous phantom. Int. J. Cancer Ther. Oncol., 1(1), 01016(4pp.). DOI: 10.14319/ijcto.0101.6.
  • 15. El-Khatib, E. E., Evans, M., Pla, M., & Cunningham, J. R. (1989). Evaluation of lung dose correction methods for photon irradiations of thorax phantoms. Int. J. Radiat. Oncol. Biol. Phys., 17, 871–878.
  • 16. Orton, C. G., Chungbin, S., & Klein, E. E., Gillin, M. T., Schultheiss, T. E., & Sanse, W. T. (1998). Study of lung density corrections in a clinical trial (RTOG 88-08). Radiation Therapy Oncology Group. Int. J. Radiat. Oncol. Biol. Phys., 41(4), 787–794. DOI:10.1016/S0360-3016(98)00117-5.
  • 17. Batho, H. F. (1964). Lung corrections in cobalt 60 beam therapy. J. Can. Assoc. Radiol., 15, 79–83.
  • 18. Gerbi, B. J. (1991). A mathematical expression for %DD accurate from Co-60 to 24 MV. Med. Phys. , 18(4), 724–726. DOI: 10.1118/1.596666.
  • 19. Li, X. A. (1999). Peak scatter factors for high-energy photon beams. Med. Phys., 26(6), 962–966. DOI: 10.1118/1.598489.
  • 20. ICRU. (1987). Use of computers in external beam radiotherapy procedures with high-energy photons and electrons. Maryland: ICRU Publications. (ICRU Report No. 42).
  • 21. Ekstrand, K. E., & Barnes, W. H. (1990). Pitfalls in the use of high energy X rays to treat tumors in the lung. Int. J. Radiat. Oncol. Biol. Phys., 18(1), 249–252.
  • 22. Hunt, M. A., Desobry, G. E., Fowble, B., & Coia, L. R. (1997). Effect of low-density lateral interfaces on soft-tissue doses. Int. J. Radiat. Oncol. Biol. Phys., 37(2), 475–482.
  • 23. Kornelsen, R. O., & Young, M. E. (1982). Changes in the dose-profile of a 10 MV x-ray beam within and beyond low-density material. Med. Phys., 9, 114–116. DOI: 10.1118/1.595059.
  • 24. Rice, R. K., Mijnheer, B. J., & Chin, L. M. (1988). Benchmark measurements for lung dose corrections for X-ray beams. Int. J. Radiat. Oncol. Biol.Phys., 15(2), 399–409. DOI: 10.1016/S0360-3016(98)90022-0.
  • 25. Yorke, E., Harisiadis, L., Wessels, B., Aghdam, H.,& Altemus, R. (1996). Dosimetric considerations in radiation therapy of coin lesions of the lung. Int. J. Radiat. Oncol. Biol. Phys., 34(2), 481–487.
  • 26. Young, M. E., & Kornelsen, R. O. (1983). Dose corrections for low-density tissue inhomogeneities and air channels for 10-MV x rays. Med. Phys., 10, 450–455.
  • 27. Lulu, B. A., & Bjärngard, B. E. (1982). A derivation of Batho’s correction factor for heterogeneities. Med. Phys., 9, 907–909. DOI: 10.1118/1.595201.
  • 28. El-Khatib, E., & Battista, J. J. (1984). Improved lung dose calculation using tissue–maximum ratios in the Batho correction. Med. Phys., 11(3), 279–286. DOI: 10.1118/1.595495.
  • 29. du Plessis, F. C. P., Willemse, C. A., Lötter, M. G., & Goedhals, L. (2001). Comparison of the Batho, ETAR and Monte Carlo dose calculation methods in CT based patient models. Med. Phys., 28(4), 582–589. DOI: 10.1118/1.1357223.
  • 30. Sontag, M. R., & Cunningham, J. R. (1977). Corrections to absorbed dose calculations for tissue inhomogeneities. Med. Phys., 4(5), 431–436. DOI: 10.1118/1.59432930.
  • 31. Wong, J. W., & Henkelman, R. M. (1982). Reconsideration of the power-law (Batho) equation for inhomogeneity corrections. Med. Phys., 9(4), 421–430. DOI: 10.1118/1.595098.
  • 32. Lulu, B. A., & Bjärngard, B. E. (1982). Batho’s correction factor combined with scatter summation. Med. Phys., 9(3), 372–377. DOI: 10.1118/1.595174.
  • 33. Wong, J. W., & Purdy, J. A. (1990). On methods of inhomogeneity corrections for photon transport. Med. Phys., 17(5), 807–814. DOI: 10.1118/1.596555
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5f5f75a-2ba7-4ba3-bb57-ea0a4a907fad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.