Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The conducted research aims to describe the kinetics of Streptococcus mutans bacteria growth on the surface of Zr-C coatings with varying carbon content deposited on 316L medical-grade stainless steel substrates. Design/methodology/approach: The coatings were deposited using the MS PVD (Magnetron Sputtering Physical Vapour Deposition) technique at a constant temperature of 400°C. Varying carbon contents in the coatings were achieved by changing the flow rate of acetylene during the process. The dynamics of bacteria growth cultivated at 37°C were examined on the surface of the coatings for incubation times ranging from 0 to 72 hours. Generalised logistic functions were utilised for the mathematical description of the obtained results. Findings: The produced coatings exhibited varying carbon content, determining the structural composition ranging from a mixture of metallic Zr and ZrC through stoichiometric zirconium carbide to nanocrystalline grains of ZrC in an amorphous carbon matrix. The obtained results unequivocally demonstrate that in the case of ZrC coatings, the carbon content influences both the bacterial growth rate during the proliferation phase and the final population of bacteria. Research limitations/implications: In the conducted research on bacterial population dynamics, only a single strain of Streptococcus mutans was considered, and the mathematical description was limited to reaching a pseudo-steady state by the population. Practical implications: The proposed model can successfully be adapted to describe the dynamics of other individual strains of bacteria dwelling on metallic surfaces as well as coatings. Originality/value: The proposed model can serve as a tool for studying, among other things, inflexion points of logistic curves, which are considered as the boundary between the dominance of anabolic and catabolic processes in the bacterial population.
Wydawca
Rocznik
Tom
Strony
78--85
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- Department of Biomedical Engineering, Faculty of Mechanical Engineering and Energy, Koszalin University of Technology, Śniadeckich 2 St., 75-453 Koszalin, Poland
autor
- Student’s Scientific Group in Orthodontics, Poznan University of Medical Science, 60-812 Poznań, Poland
autor
- Department of Biomedical Engineering, Faculty of Mechanical Engineering and Energy, Koszalin University of Technology, Śniadeckich 2 St., 75-453 Koszalin, Poland
autor
- Department of Biomedical Engineering, Faculty of Mechanical Engineering and Energy, Koszalin University of Technology, Śniadeckich 2 St., 75-453 Koszalin, Poland
autor
- Department of Biomedical Engineering, Faculty of Mechanical Engineering and Energy, Koszalin University of Technology, Śniadeckich 2 St., 75-453 Koszalin, Poland
Bibliografia
- [1] K.-K. Chew, S.H.S. Zein, A.L. Ahmad, The corrosion scenario in human body: stainless steel 316L orthopaedic implants, Natural Science 4/3 (2012) 184-188. DOI: https://doi.org/10.4236/ns.2012.43027
- [2] R.I.M. Asri, W.S.W. Harun, M. Samykano, N.A.C. Lah, S.A.C. Ghani, F. Tarlochan, M.R. Raza, Corrosion and surface modification on biocompatible metals: A review, Materials Science and Engineering: C 77 (2017) 1261-1274. DOI: https://doi.org/10.1016/j.msec.2017.04.102
- [3] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Shaping the structure and surface properties of engineering materials, Silesian University of Technology Publishing House, Gliwice, 2013 (in Polish).
- [4] L.A. Dobrzański, Shaping the structure and properties of engineering and biomedical materials, International OCSCO World Press, Gliwice, 2009 (in Polish).
- [5] A. Escudeiro, N.M. Figueiredo, T. Polcar, A. Cavaleiro, Structural and mechanical properties of nanocrystalline Zr co-sputtered a-C(:H) amorphous films, Applied Surface Science 325 (2015) 64-72. DOI: https://doi.org/10.1016/j.apsusc.2014.11.015
- [6] A. Escudeiro, T. Polcar, A. Cavaleiro, a-C(:H) and a-C(:H)_Zr coatings deposited on biomedical Ti-based substrates: tribological properties, Thin Solid Films 538 (2013) 89-96. DOI: https://doi.org/10.1016/j.tsf.2012.12.086
- [7] J.M. Gutiérrez B., K. Conceição, V.M. de Andrade, V.J. Trava-Airoldi, G. Capote, High antibacterial properties of DLC film doped with nanodiamond, Surface and Coatings Technology 375 (2019) 395-401. DOI: https://doi.org/10.1016/j.surfcoat.2019.07.029
- [8] R. Hauert, K. Thorwarth, G. Thorwarth, An overview on diamond-like carbon coatings in medical applications, Surface and Coatings Technology 233 (2013) 119-130. DOI: https://doi.org/10.1016/j.surfcoat.2013.04.015
- [9] S.N. Robertson, D. Gibson, W.G. MacKay, S. Reid, C. Williams, R. Birney, Investigation of the antimicrobial properties of modified multilayer diamond-like carbon coatings on 316 stainless steel, Surface and Coatings Technology 314 (2017) 72-78. DOI: https://doi.org/10.1016/j.surfcoat.2016.11.035
- [10] D. Ionita, F. Golgovici, A. Mazare, M. Badulescu, I. Demetrescu, G.-R. Pandelea‐Dobrovicescu, Corrosion and antibacterial characterization of Ag‐DLC coating on a new CoCrNbMoZr dental alloy, Materials and Corrosion 69/10 (2018) 1403-1411. DOI: https://doi.org/10.1002/maco.201810147
- [11] J. Ratajski, Ł. Szparaga, K. Mydłowska, E. Dobruchowska, E. Czerwińska, A. Gilewicz, Investigation on the influence of ZrC coatings structure on their resistance to corrosion and antimicrobial properties, Engineering of Biomaterials 21/148 (2018) 72.
- [12] E. Czerwińska, K. Schickle, Z. Parlak, N. Grigorev, Ł. Szparaga, K. Mydłowska, J. Ratajski, Biological evaluation of ZrC coating on stainless steel 316L: are ZrC-coatings suitable for cardio vascular applications, Engineering of Biomaterials 22/153 (2019) 52.
- [13] Ł. Szparaga, K. Mydłowska, E. Dobruchowska, P. Bartosik, A. Gilewicz, J. Ratajski, Investigation of mechanical and anticorrosive properties of ZrC coatings deposited by magnetron sputtering technique, Engineering of Biomaterials 21/148 (2018) 73.
- [14] A. Gilewicz, K. Mydłowska, J. Ratajski, Ł. Szparaga, P. Bartosik, P. Kochmański, R. Jędrzejewski, Structural, mechanical and tribological properties of ZrC thin films deposited by magnetron sputtering, Vacuum 169 (2019) 108909. DOI: https://doi.org/10.1016/j.vacuum.2019.108909
- [15] K. Mydłowska, E. Czerwińska, A. Gilewicz, E. Dobruchowska, E. Jakubczyk, Ł. Szparaga, P. Ceynowa, J. Ratajski, Evolution of Phase Composition and Antibacterial Activity of Zr-C Thin Films, Processes 8/3 (2020) 260. DOI: https://doi.org/10.3390/pr8030260
- [16] Q.N. Meng, M. Wen, F. Mao, N. Nedfors, U. Jansson, W.T. Zheng, Deposition and characterization of reactive magnetron sputtered zirconium carbide films, Surface and Coatings Technology 232 (2013) 876-883. DOI: https://doi.org/10.1016/j.surfcoat.2013.06.116
- [17] U. Paśnik, I. Brukwicka, B. Błaszczak, Z. Kopański, J. Rowiński, J. Strychar, Oral cavity microflora, Journal of Clinical Healthcare 1 (2017) 5-9 (in Polish).
- [18] J.R. Willis, T. Gabaldón, The human oral microbiome in health and disease: from sequences to ecosystems, Microorganisms 8/2 (2020) 308. DOI: https://doi.org/10.3390/microorganisms8020308
- [19] D. Bartnicka, The protective role of Candida albicans cells against bacteria Porphyromonas gingivalis forming mixed biofilm occurring in paradontosis, PhD Thesis, Jagiellonian University, Kraków, 2020 (in Polish).
- [20] K. Czaczyk, Factors affecting the adhesion of microorganisms to solid surfaces, Advances in Microbiology 43/3 (2004) 267-283 (in Polish).
- [21] M. Malinowska, B. Tokarz-Deptula, W. Deptula, Human microbiome, Advancements of Microbiology 56/1 (2017) 33-42 (in Polish).
- [22] C. Popova, V. Dosseva-Panova, V. Panov, Microbiology of periodontal diseases. A review, Biotechnology and Biotechnological Equipment 27/3 (2013) 3754-3759. DOI: https://doi.org/10.5504/BBEQ.2013.0027
- [23] A. Tsoularis, J. Wallace, Analysis of logistic growth models, Mathematical Biosciences 179/1 (2002) 21-55. DOI: https://doi.org/10.1016/S0025-5564(02)00096-2
- [24] F. Brauer, C. Castillo-Chavez, Mathematical models in population biology and epidemiology, Springer, New York, 2012. DOI: https://doi.org/10.1007/978-1-4614-1686-9
- [25] F.J. Richards, A flexible growth function for empirical use, Journal of Experimental Botany 10/2 (1959) 290-301. DOI: https://doi.org/10.1093/jxb/10.2.290
- [26] L. Cao, P.-J. Shi, L. Li, G. Chen, A new flexible sigmoidal growth model, Symmetry 11/2 (2019) 204. DOI: https://doi.org/10.3390/sym11020204
- [27] B. Martin, Z. Tamanai-Shacoori, J. Bronsard, F. Ginguené, V. Meuric, F. Mahé, M. Bonnaure-Mallet, A new mathematical model of bacterial interactions in two-species oral biofilms, PloS ONE 12/3 (2017) e0173153. DOI: https://doi.org/10.1371/journal.pone.0173153
- [28] L. Samaranayake, Essential microbiology for dentistry, Elsevier Health Sciences, Edinburgh, UK, 2018.
- [29] R.M. Maier, I.L. Pepper, Bacterial growth, in: I.L. Pepper, C.P. Gerba, T.J. Gentry (eds), Environmental Microbiology, 3 rd Edition, Academic Press, Cambridge, MA, USA, 2015. DOI: https://doi.org/10.1016/B978-0-12-394626-3.00003-X
- [30] P.R. Murray, K.S. Rosenthal, M.A. Pfaller, Medical microbiology, 8 th Edition, Elsevier Health Science, Edinburgh, UK, 2015.
- [31] L. Bruslind, General microbiology, Oregon State University, Corvallis, OR, USA, 2023.
- [32] H.G. Gauch, J.G. Hwang, G.W. Fick, Model evaluation by comparison of model‐based predictions and measured values, Agronomy Journal 95/6 (2003) 1442-1446. DOI: https://doi.org/10.2134/agronj2003.1442
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5f5e484-c0b7-4fe0-a918-69f8f6e002d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.