PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of magnetic ordered mesoporous carbon for quantitative analysis of acidic phytohormones in mushroom samples prior to their determination by ultra-high-performance liquid chromatography–tandem mass spectrometry

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel method was established for analysing trace four acidic phytohormones, namely, indole-3-acetic acid, 3-indolebutyric acid, abscisic acid, and 1-naphthylacetic acid, using magnetic ordered mesoporous carbon (MOMC). MOMC was facilely synthesised via self-assembly strategy with a direct carbonisation process. The properties of MOMC were characterised using various instruments. MOMC exhibited excellent adsorption capacity towards the analytes. Various critical parameters which may influence the enrichment efficiency were evaluated, including amount of MOMC, extraction conditions, and desorption conditions. An efficient method based on MOMC magnetic solid-phase extraction coupled with ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) was developed to analyse the trace four acidic phytohormones, with good correlation coefficients (R2 = 0.9965–0.9998) and low limits of detection (0.13–9.7 ng L⁻¹, S/N = 3). Trace acidic phytohormones in Agaricus bisporus and Hypsizygus marmoreus samples were determined with satisfactory recoveries (91.8–108%) and reproducibility (2.6–6.3%). The features indicated that MOMC provides an efficient platform for mushroom sampling; the developed method is convenient, promising, and sensitive for the detection of trace phytohormones in complicated mushroom samples.
Rocznik
Strony
60--69
Opis fizyczny
Bibliogr. 34 poz., tab., rys., wykr.
Twórcy
  • School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi, 562400, PR China
autor
  • School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi, 562400, PR China
autor
  • School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi, 562400, PR China
  • Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, PR China
autor
  • School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi, 562400, PR China
autor
  • School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi, 562400, PR China
autor
  • School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi, 562400, PR China
Bibliografia
  • 1. Jiang, K.; Asami, T. Chemical regulators of plant hormones and their applications in basic research and agriculture. Biosci. Biotech. Bioch. 2018, 82, 1265–300.
  • 2. Zhao, B. Q.; Liu, Q. Y.; Wang, B. S.; Yuan, F. Roles of phytohormones and their signaling pathways in leaf development and stress responses. J. Agric. Food Chem. 2021, 69, 3566–84.
  • 3. Sharma, L.; Dalal, M.; Verma, R. K.; Kumar, S. V. V.; Yadav, S. K.; Pushkar, S.; Kushwaha, S. R.; Bhowmik, A.; Chinnusamy, V. Auxin protects spikelet fertility and grain yield under drought and heat stresses in rice. Environ. Exp. Bot. 2018, 150, 9–24.
  • 4. Zhu, Y. C.; Wang, Q. Y.; Gao, Z. W.; Wang, Y.; Liu, Y. J.; Ma, Z. P.; Chen, Y. W.; Zhang, Y. C.; Yan, F.; Li, J. W. Analysis of phytohormone signal transduction in sophora alopecuroides under salt stress. Int. J. Mol. Sci. 2021, 22, 7313–35.
  • 5. Luo, D.-L.; Ba, L. J.; Shan, W.; Kuang, J. F.; Lu, W. J.; Chen, J. Y. Involvement of WRKY transcription factors in abscisic-acid-induced cold tolerance of banana fruit. J. Agr. Food Chem. 2017, 65, 3627–35.
  • 6. Hauser, F.; Waadt, R.; Schroeder, J. I. Evolution of abscisic acid synthesis and signaling mechanisms. Curr. Biol. 2011, 21, 346–55.
  • 7. Liu, J. J.; Gu, X. Z.; Zou, R. X.; Nan, W. P.; Yang, S. H.; Wang, H. L.; Chen, X. T. Phytohormone abscisic acid improves spatial memory and synaptogenesis involving NDR1/2 kinase in rats. Front. Pharmacol. 2018, 9, 1141–50.
  • 8. Zhang, X.-F.; Tong, J. H.; Bai, A. N.; Liu, C. M.; Xiao, L. T.; Xue, H. W. Phytohormone dynamics in developing endosperm influence rice grain shape and quality. J. Integr. Plant Biol. 2020, 62, 1625–37.
  • 9. Hou, S. H.; Song, X.; Li, L. L.; Wang, R. Y.; Wang, X.; Ji, W. H. Boronic acid-functionalized scholl-coupling mesoporous polymers for online solid-phase extraction of brassinosteroids from plant-derived foodstuffs. J. Agr. Food Chem. 2021, 69, 4883–93.
  • 10. Li, Y. X.; Deng, T.; Duan, C. F.; Ni, L. X.; Wang, N.; Guan, Y. F. Dispersive matrix solid-phase extraction method coupled with high performance liquid chromatography-tandem mass spectrometry for ultrasensitive quantification of endogenous brassinosteroids in minute plants and its application for geographical distribution study. J. Agr. Food Chem. 2019, 67, 3037–45.
  • 11. Jiang, C. L.; Dai, J. X.; Han, H. L.; Wang, C.; Zhu, L.; Lu, C. Y.; Chen, H. P. Determination of thirteen acidic phytohormones and their analogues in tea (camellia sinensis) leaves using ultra high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2020, 1149, 122144–52.
  • 12. Wang, H. X.; Wang, M. L.; Wang, X. Z.; Ding, Y. L. Detection of seven phytohormones in peanut tissues by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry. J. Integr. Agr. 2020, 19, 700–8.
  • 13. Jin, L. M.; Guo, B. J.; Bo, J.; Hua, J.; Shan, J. Y. Determination of four kinds of endogenous hormones in poplar dialyzate by HPLC with microdialysis. Acta Chromatogr. 2013, 25, 627–37.
  • 14. Zeng, Q. L.; Ruan, Y. J.; Sun, L. S.; Du, F. Y.; Guo, L.; Cheng, Z. F.; Ruan, G. H.; Li, J. P. Development of graphene oxide functionalized cotton fiber based solid phase extraction combined with liquid chromatography-fluorescence detection for determination of trace auxins in plant samples. Chromatographia 2018, 81, 861–9.
  • 15. Jiraskova, D.; Poulickova, A.; Novak, O.; Sedlakova, K.; Hradecka, V.; Strnad, M. High-throughput screening technology for monitoring phytohormone production in microalgae. J. Phycol. 2009, 45, 108–18.
  • 16. Huang, Z. H.; Wang, Z. L.; Shi, B. L.; Wei, D.; Chen, J. X.; Wang, S. L.; Gao, B. J. Simultaneous determination of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate from ulmus pumila leaves by GC-MS. Int. J. Anal. Chem. 2015, 2015, 698630–6.
  • 17. Bosco, R.; Caser, M.; Vanara, F.; Scariot, V. Development of a rapid LC-DAD/FLD method for the simultaneous determination of auxins and abscisic acid in plant extracts. J. Agr. Food Chem. 2013, 61, 10940–7.
  • 18. Cai, W.-J.; Yu, L.; Wang, W.; Sun, M. X.; Feng, Y. Q. Simultaneous determination of multiclass phytohormones in submilligram plant samples by One-Pot multifunctional derivatization-assisted liquid chromatography-tandem mass spectrometry. Anal. Chem. 2019, 91, 3492–9.
  • 19. Aihebaier, S.; Muhammad, T.; Wei, A.; Mamat, A.; Abuduaini, M.; Pataer, P.; Yigaimu, A.; Yimit, A. Membrane-protected molecularly imprinted polymer for the microextraction of indole-3-butyric acid in mung bean sprouts. ACS Omega 2019, 4, 16789–93.
  • 20. Liang, Y.; Zhu, X. C.; Zhao, M. P.; Liu, H. W. Sensitive quantification of isoprenoid cytokinins in plants by selective immunoaffinity purification and high performance liquid chromatography-quadrupole-time of flight mass spectrometry. Methods 2012, 56, 174–9.
  • 21. Wang, Q.; Cai, W. J.; Yu, L.; Ding, J.; Feng, Y. Q. Comprehensive profiling of phytohormones in honey by sequential liquid-liquid extraction coupled with liquid chromatography-mass spectrometry. J. Agr. Food Chem. 2017, 65, 575–85.
  • 22. Liu, Z.; Wei, F.; Feng, Y. Q. Determination of cytokinins in plant samples by polymer monolith microextraction coupled with hydrophilic interaction chromatography-tandem mass spectrometry. Anal. Methods 2010, 2, 1676–85.
  • 23. Luo, X. T.; Cai, B. D.; Chen, X.; Feng, Y. Q. Improved methodology for analysis of multiple phytohormones using sequential magnetic solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2017, 983, 112–20.
  • 24. Ding, J.; Gao, Q.; Luo, D.; Shi, Z. G.; Feng, Y. Q. N-octadecylphosphonic acid grafted mesoporous magnetic nanoparticle: preparation, characterization, and application in magnetic solid-phase extraction. J. Chromatogr. A. 2010, 1217, 7351–8.
  • 25. Zhang, Z. M.; Huang, Y. C.; Ding, W. W.; Li, G. K. Multilayer interparticle linking hybrid MOF-199 for noninvasive enrichment and analysis of plant hormone ethylene. Anal. Chem. 2014, 86, 3533–40.
  • 26. Wang, M. W.; Liang, S.; Bai, L. G.; Qiao, F. X.; Yan, H. Y. Green protocol for the preparation of hydrophilic molecularly imprinted resin in water for the efficient selective extraction and determination of plant hormones from bean sprouts. Anal. Chim. Acta 2019, 1064, 47–55.
  • 27. Zhang, X. N.; Niu, J. H.; Zhang, X. T; Xiao, R.; Lu, M. H.; Cai, Z. W. Graphene oxide-SiO2 nanocomposite as the adsorbent for extraction and preconcentration of plant hormones for HPLC analysis. J. Chromatogr. B 2017, 1046, 58–64.
  • 28. Yan, Z. M.; Wu, M.; Hu, B. Q.; Yao, M. N.; Zhang, L.; Lu, Q. M.; Pang, J. Electrospun UiO-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples. J. Chromatogr. A. 2018, 1542, 19–27.
  • 29. Wu, Q.; Wu, D. P.; Guan, Y. F. Polyaniline sheathed electrospun nanofiber bar for in vivo extraction of trace acidic phytohormones in plant tissue. J. Chromatogr. A. 2014, 1342, 16–23.
  • 30. Wang, W.; He, M.; Chen, B. B.; Hu, B. Simultaneous determination of acidic phytohormones in cucumbers and green bean sprouts by ion-pair stir bar sorptive extraction-high performance liquid chromatography. Talanta 2017, 170, 128–36.
  • 31. Cao, J. K.; Li, R. X.; Liang, S. H.; Li, J.; Xu, Q.; Wang, C. M. Simultaneous extraction of four plant growth regulators residues in vegetable samples using solid phase extraction based on thiol-functionalized nanofibers mat. Food Chem. 2020, 310, 125859–66.
  • 32. Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Yang, H. F.; Li, Z.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 2005, 44, 7053–9.
  • 33. Zhai, Y. P.; Dou, Y. Q.; Liu, X. X.; Tu, B.; Zhao, D. Y. One-pot synthesis of magnetically separable ordered mesoporous carbon. J. Mater. Chem. 2009, 19, 3292–300.
  • 34. Li, X.; Cao, W. C.; Liu, Y. G.; Zeng, G. M.; Zeng, W.; Qin, L.; Li, T. T. Property variation of magnetic mesoporous carbon modified by aminated hollow magnetic nanospheres: synthesis, characterization, and sorption. ACS Sustain. Chem. Eng. 2017, 5, 179–88.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5edeefa-2bef-42ca-ac69-b5a707812046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.