PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Early Thermal History of Rhea: The Role of Serpentinization and Liquid State Convection

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Early thermal history of Rhea is investigated. The role of the following parameters of the model is investigated: time of beginning of accretion, tini, duration of accretion, tac, viscosity of ice close to the melting point, η0, activation energy in the formula for viscosity, E, thermal conductivity of silicate component, ksil, ammonia content, XNH3, and energy of serpentinization, cserp. We found that tini and tac are crucial for evolution. All other parameters are also important, but no dramatic differences are found for realistic values. The process of differentiation is also investigated. It is found that liquid state convection could delay the differentiation for hundreds of My. The results are confronted with observational data from Cassini spacecraft. It is possible that differentiation is fully completed but the density of formed core is close to the mean density. If this interpretation is correct, then Rhea could have accreted any time before 3-4 My after formation of CAI.
Czasopismo
Rocznik
Strony
2677--2716
Opis fizyczny
Bibliogr. 100 poz.
Twórcy
  • Institute of Geophysics, Faculty of Physics, University of Warsaw, Warszawa, Poland
autor
  • Institute of Geological Sciences, Polish Academy of Sciences in Wrocław, Wrocław, Poland
  • Department of Lithospheric Research, University of Vienna, Vienna, Austria
Bibliografia
  • Abramov, O., and S.J. Mojzsis (2011), Abodes for life in carbonaceous asteroids?, Icarus 213, 1, 273-279, DOI: 10.1016/j.icarus.2011.03.003.
  • Anderson, J.D., and G. Schubert (2007), Saturn’s satellite Rhea is a homogeneous mix of rock and ice, Geophys. Res. Lett. 34, 2, L02202, DOI: 10.1029/ 2006GL028100.
  • Barr, A.C., and R.M. Canup (2008), Constraints on gas giant satellite formation from the interior states of partially differentiated satellites, Icarus 198, 1, 163-177, DOI:. 10.1016/j.icarus.2008.07.004.
  • Bland, P.A., M.D. Jackson, R.F. Coker, B.A. Cohen, B. Webber, M.R. Lee, C.M. Duffy, R.J. Chater, M.G. Ardakani, D.S. McPhail, D.W. McComb, and G.K. Benedix (2009), Why aqueous alteration in asteroids was isochemical: high porosity doesn't equal high permeability, Earth Planet. Sci. Lett. 287, 3-4, 559-568, DOI: 10.1016/j.epsl.2009.09.004.
  • Brearley, A.J. (2004), Nebular versus parent-body processing. In: A.M. Davis, H.D. Holland, and K.K. Turekian (eds.), Meteorites, Comets, and Planets. Treatise on Geochemistry, Elsevier-Pergamon, Oxford, 247-268.
  • Brearley, A.J. (2006), The action of water. In: D.S. Lauretta, and H.Y. McSween Jr. (eds.), Meteorites and the Early Solar System II, University of Arizona Press, Tuscon, 587-624.
  • Brearley, A.J., and R.H. Jones (1998), Chondritic meteorites. In: J.J. Papike (ed.), Planetary Materials, Mineralogical Society of America, Reviews in Mineralogy, Vol. 36, 3-1–3-398.
  • Canup, R.M., and W.R. Ward (2009), Origin of Europa and the Galilean satellites. In: R.T. Pappalardo, W.B. McKinnon, and K. Khurana (eds.), Europa, University of Arizona Press in collaboration with Lunar and Planetary Institute, Tucson, 59-83.
  • Castillo-Rogez, J. (2006), Internal structure of Rhea, J. Geophys Res. 111, E11, E11005, DOI: 10.1029/2004JE002379.
  • Castillo-Rogez, J., D. Matson, C. Sotin, T. Johnson, J. Lunine, and P. Thomas (2007), Iapetus’ geophysics: Rotation rate, shape, and equatorial ridge, Icarus 190, 1, 179-202, DOI: 10.1016/j.icarus.2007.02.018.
  • Christensen, U. (1984), Convection with pressure and temperature-dependent nonNewtonian rheology, Geophys. J. Roy. Astr. Soc. 77, 2, 343-384, DOI: 10.1111/j.1365-246X.1984.tb01939.x.
  • Cogoni, M., B. D’Aguanno, L.N. Kuleshova, and D.W.M. Hofmann (2011), A powerful computational crystallography method to study ice polymorphism, J. Chem. Phys. 134, 20, 204506, DOI: 10.1063/1.3593200.
  • Consolmagno, G.J., and D.T. Britt (1998), The density and porosity of meteorites from the Vatican collection, Metorit. Planet. Sci. 33, 6, 1231-1241, DOI: 10.1111/j.1945-5100.1998.tb01308.x.
  • Coradini, A., G. Magni, and D. Turrini (2010), From gas to satellitesimals: Disk formation and evolution, Space Sci. Rev. 153, 1, 411-429, DOI: 10.1007/ s11214-009-9611-9.
  • Czechowski, L. (1993), Theoretical approach to mantle convection. In: R. Teisseyre L. Czechowski, and J. Leliwa-Kopystyński (eds.), Dynamics of The Earth’s Evolution, Elsevier, Amsterdam, 161-271.
  • Czechowski, L. (2006), Parameterized model of convection driven by tidal and radiogenic heating, Adv. Space Res. 38, 4, 788-793, DOI: 10.1016/j.asr.2005. 12.013.
  • Czechowski, L. (2012), Thermal history and large scale differentiation of the Saturn’s satellite Rhea, Acta Geophys. 60, 4, 1192-1212, DOI: 10.2478/ s11600-012-0041-9.
  • Czechowski, L. (2014), Some remarks on the early evolution of Enceladus, Planet. Space Sci. B. 104, 185-199, DOI: 10.1016/j.pss.2014.09.010.
  • Czechowski, L., and K.J. Kossacki (2009), Thermal convection in the porous methane-soaked regolith of Titan: Investigation of stability, Icarus 202, 2, 599- 606, DOI: 10.1016/j.icarus.2009.02.032.
  • Czechowski, L., and K.J. Kossacki (2012), Thermal convection in the porous methane-soaked regolith in Titan: finite amplitude convection, Icarus 217, 1, 130-143, DOI: 10.1016/j.icarus.2011.10.006.
  • Czechowski, L., and J. Leliwa-Kopystyński (2003), Tidal heating and convection in the medium size icy satellites, Celest. Mech. Dyn. Astr. 87, 1, 157-169, DOI: 10.1023/A:1026136025400.
  • Czechowski, L., and J. Leliwa-Kopystynski (2013), Remarks on the Iapetus bulge and ridge, Earth Planet Space 65, 8, 929-934, DOI: 10.5047/eps.2012. 12.008.
  • Czechowski, L., and P.P. Witek (2015), Comparison of early evolutions of mimas and enceladus, Acta Geophys. 63, 3, 900-921, DOI: 10.1515/acgeo-2015- 0024.
  • Dalton, J.B., O. Prieto-Ballesteros, J. Kargel, C.S. Jamieson, J. Joliviet, and R. Quinn (2005), Spectral comparison of highly hydrated sulfate salts to disrupted terrains on Europa, Icarus 177, 472-490.
  • Davaille, A., and C. Jaupart (1993), Transient high-Rayleigh-number thermal convection with large viscosity variations, J. Fluid Mech. 253, 141-166, DOI: 10.1017/S0022112093001740.
  • Davies, G.F. (2007), Mantle regulation of core cooling: A geodynamo without core radioactivity? Phys. Earth Planet. In. 160, 3-4, 215-229, DOI: 10.1016/ j.pepi.2006.11.001.
  • De Pater, I., and J.J. Lissauer (2001), Planetary Sciences, Cambridge University Press, Cambridge, 528 pp.
  • Desch, S.J., J.C. Cook, T.C. Doggett, and S.B. Porter (2009), Thermal evolution of Kuiper belt objects, with implications for cryovolcanism, Icarus 202, 2, 694-714, DOI: 10.1016/j.icarus.2009.03.009.
  • Dumoulin, C., M.P. Doin, and L. Fleitout (1999), Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or nonNewtonian rheology, J. Geophys. Res. 104, B6, 12759-12777, DOI: 10.1029/1999JB900110.
  • Durham, W.B., S.H. Kirby, and L.A. Stern (1998), Rheology of planetary ices. In: B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publ., Dordrecht, 63-78.
  • Forni, O., A. Coradini, and C. Federico (1991), Convection and lithospheric strength in dione, an icy satellite of Saturn, Icarus 94, 1, 232-245, DOI: 10.1016/ 0019-1035(91)90153-K.
  • Giese, B., T. Denk, G. Neukum, T. Roatsch, P. Helfenstein, P.C. Thomas, E.P. Turtle, A. McEwen, and C.C. Porco (2008), The topography of Iapetus’ leading side, Icarus 193, 2, 359-371, DOI: 10.1016/j.icarus.2007.06.005.
  • Goldsby, D.L., and D.L. Kohlstedt (1997). Grain boundary sliding in fine-grained Ice-I, Scripta Mater. 37, 9, 1399-1405.
  • Gounelle, M., and M.E. Zolensky (2001), A terrestrial origin for sulphate veins in CI1 carbonaceous chondrites, Meteorit. Planet. Sci. 36, 10, 1321-1329, DOI: 10.1111/j.1945-5100.2001.tb01827.x.
  • Grasset, O., and P.M. Parmentier (1998), Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary evolution, J. Geophys. Res. 103, B8, 18171-18181, DOI: 10.1029/98JB01492.
  • Hobbs, P.V. (1974), Ice Physics, Oxford University Press, New York.
  • Hussmann, H., G. Choblet, D.L. Matson, C. Sotin, G. Tobie, and T. van Hoolst (2010), Implications of rotation, orbital states, energy sources, and heat transport for internal processes in icy satellites, Space Sci. Rev. 153, 1-4, 317-348, DOI: 10.1007/s11214-010-9636-0.
  • Hutchison, R. (2004), Meteorites: A Petrologic, Chemical and Isotopic Synthesis, Cambridge University Press, Cambridge, 506 pp.
  • Iess, L., N.J. Rappaport, P. Tortora, J. Lunine, J.W. Armstrong, S.W. Asmar, L. Somenzi, and F. Zingoni (2007), Gravity field and interior of Rhea from Cassini data analysis, Icarus 190, 2, 585-593, DOI: 10.1016/j.icarus.2007. 03.027.
  • Ivers, D.J., and C.G. Phillips (2012), Anisotropic turbulent thermal diffusion and thermal convection in a rapidly rotating fluid sphere, Physics Planet. In. 190, 1-9, DOI: 10.1016/j.pepi.2011.10.006.
  • Jaumann, R., R.N. Clark, F. Nimmo, A.R. Hendrix, B.J. Buratti, T. Denk, J.M. Moore, P.M. Schenk, S.J. Ostro, and R. Srama (2009), Icy satellites: Geological evolution and surface processes. In: M.K. Dougherty, L.W. Esposito, and S.M. Krimigis (eds.), Saturn from Cassini-Huygens, Springer, 637-681, DOI: 10.1007/978-1-4020-9217-6_20.
  • Jull, A.J.T., S. Cheng, J.L. Gooding, and M.A. Velbel (1988), Rapid growth of magnesium-carbonate weathering products in a stony meteorite from Antarctica, Science 242,4877, 417-419, DOI: 10.1126/science.242.4877.417.
  • Kargel, J.S., and S. Pozio (1996), The volcanic and tectonic history of Enceladus, Icarus 119, 2, 385-404, DOI: 10.1006/icar.1996.0026.
  • Kargel, J.S., J.Z. Kaye, J.W. Head, G.M. Marion, and R. Sassen, J.K. Crowley, O. Prieto-Ballesteros, S.A. Grant, and D.L. Hogenboom (2000), Europa’s crust and ocean: origin, composition, and the prospects for life, Icarus 148, 1, 226-265, DOI: 10.1006/icar.2000.6471.
  • Kuskov, O.L., and V.A. Kronrod (2005), Internal structure of Europa and Callisto, Icarus 177, 2, 550-569, DOI: 10.1016/j.icarus.2005.04.014.
  • Landau, L.D., and E.M. Lifshitz (1987), Fluid Mechanics. Vol. 6, 2nd ed., Butterworth-Heinemann, 552 pp.
  • Leliwa-Kopystynski, J., M. Maruyama, and T. Nakajima (2002), The waterammonia phase diagram up to 300 MPa: Application to icy satellites, Icarus 159, 2, 518-528, DOI: 10.1006/icar.2002.6932.
  • Llana-Funez, S., K.H. Brodie, E.H. Rutter, and J.C. Arkwright (2007), Experimental dehydration kinetics of serpentinite using pore volumometry, J. Metamorph. Geol. 25, 4, 423-428, DOI: 10.1111/j.1525-1314.2007.00703.x.
  • Losiak, A., and M.A. Velbel (2011), Evaporite formation during weathering of Antarctic meteorites – A weathering census analysis based on the ANSMET database, Meteorit. Planet. Sci. 46, 3, 443-458, DOI: 10.1111/j.1945- 5100.2010.01166.x.
  • Macke, R.J., G.J. Consolmagno, and D.T. Britt (2011), Density, porosity, and magnetic susceptibility of carbonaceous chondrites, Meteorit. Planet. Sci. 46, 12, 1842-1862, DOI: 10.1111/j.1945-5100.2011.01298.x.
  • Mackenzie, R.A., L. Iess, P. Tortora, and N.J. Rappaport (2008), A non-hydrostatic Rhea, Geophys. Res. Lett. 35, 5, L05204, DOI: 10.1029/2007GL032898.
  • Malamud, U., and D. Prialnik (2013), Modeling serpentinization: Applied to the early evolution of Enceladus and Mimas, Icarus 225, 1, 763-774, DOI: 10.1016/j.icarus.2013.04.024.
  • Malvern, L.E. (1969), Introduction to the Mechanics of a Continuous Medium, Prentice-Hall Inc., Englewood Cliffs, 713 pp.
  • Mangold, N., P. Allemand, P. Duval, Y. Geraud, and P. Thomas (2002), Experimental and theoretical deformation of ice-rock mixtures: Implications on rheology and ice content of Martian permafrost, Planet. Space Sci. 50, 4, 385- 401, DOI: 10.1016/S0032-0633(02)00005-3.
  • Matson, D.L., J.C. Castillo-Rogez, G. Schubert, Ch. Sotin, and W.B. McKinnon (2009), The thermal evolution and internal structure of Saturn’s mid-sized icy satellites. In: M.K. Dougherty, L.W. Esposito, and S.M. Krimigis (eds.), Saturn from Cassini-Huygens, Springer, 577-612, DOI 10.1007/978- 1-4020-9217-6_18.
  • McKinnon, W.B. (1998), Geodynamics of icy satellites. In: B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publ., Dordrecht, 525-550.
  • McKinnon, W.B., and M.E. Zolensky (2003), Sulfate content of Europa’s ocean and shell: Evolutionary considerations and some geological and astrobiological implications, Astrobiology 3, 4, 879-897, DOI: 10.1089/ 153110703322736150.
  • Merk, E., D. Breuer, and T. Spohn (2002), Numerical modeling of 26Al induced radioactive melting of asteroids concerning accretion, Icarus 159, 1, 183-191, DOI: 10.1006/icar.2002.6872.
  • Mosqueira, I., P. Estrada, and D. Turrini (2010), Planetesimals and satellitesimals: Formation of the satellite systems, Space Sci. Rev. 153, 1, 431-446, DOI: 10.1007/s11214-009-9614-6.
  • Multhaup, K., and T. Spohn (2007), Stagnant lid convection in the mid-sized icy satellite of Saturn, Icarus 186, 2, 420-435, DOI: 10.1016/j.icarus.2006. 09.001.
  • Opeil, C.P., G.J. Consolmagno, and D.T. Britt (2010), The thermal conductivity of meteorites: New measurements and analysis, Icarus 208, 1, 449-454, DOI: 10.1016/j.icarus.2010.01.021.
  • Ostro, S.J., R.D. West, M.A. Janssen, R.D. Lorenz, H.A. Zebker, G.J. Black, J.I. Lunine, L.C. Wye, R.M. Lopes-Gautier, S.D. Wall, C. Elachi, L. Roth, S. Hensley, K. Kelleher, G.A. Hamilton, Y. Gim, Y.Z. Anderson, R.A. Boehmer, W.T.K. Johnson, and the Cassini RADAR Team (2006), Cassini RADAR observations of Enceladus, Thethys, Dione, Rhea, Iapetus, Hyperion, and Phoebe, Icarus 183, 2, 479-490, DOI: 10.1016/j.icarus.2006. 02.019.
  • Peacock, S.M. (2001), Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29, 4, 299-302, DOI: 10.1130/0091-7613(2001)0292.0.CO;2.
  • Peltier, W.R., and G.T. Jarvis (1982), Whole mantle convection and the thermal evolution of the Earth, Phys. Earth Planet. In. 29, 3-4, 281-304, DOI: 10.1016/0031-9201(82)90018-8.
  • Plescia, J.B. (1985), Geology of Rhea. In: Lunar and Planetary Science Conference XVI, 665-666.
  • Porco, C.C., E. Baker, J. Barbara, K. Beurle, A. Brahic, J.A. Burns, S. Charnoz, N. Cooper, D.D. Dawson, A.D. Del Genio, T. Denk, L. Dones, U. Dyudina, M.W. Evans, B. Giese, K. Grazier, P. Helfenstein, A.P. Ingersoll, R.A. Jacobson, T.V. Johnson, A. McEwen, C.D. Murray, G. Neukum, W.M. Owen, J. Perry, T. Roatsch, J. Spitale, S. Squyres, P.C. Thomas, M. Tiscareno, E. Turtle, A.R. Vasavada, J. Veverka, R. Wagner, and R. West (2005), Cassini imaging science: Initial results on Phoebe and Iapetus, Science 307, 5713, 1237-1242, DOI: 10.1126/science.1107981.
  • Porco, C.C., P. Helfenstein, P.C. Thomas, A.P. Ingersoll, J. Wisdom , R. West, G. Neukum, T. Denk, R. Wagner, T. Roatsch, S. Kieffer, E. Turtle, A. McEwen, T.V. Johnson, J. Rathbun, J. Veverka, D. Wilson, J. Perry, J. Spitale, A. Brahic, J.A. Burns, A.D. Delgenio, L. Dones, C.D. Murray, and S. Squyres (2006), Cassini observes the active South Pole of Enceladus, Science 311, 5766, 1393-1401, DOI: 10.1126/science.1123013.
  • Postberg, F., J. Schmidt, J.K. Hillier, S. Kempf, and R. Srama (2011), A salt-water reservoir as the source of a compositionally stratified plume on Enceladus, Nature 474, 7353, 620-622, DOI: 10.1038/nature10175.
  • Prentice, A.J.R. (2006), Saturn’s icy moon Rhea: A prediction for its bulk chemical composition and physical structure at the time of the Cassini spacecraft first flyby, Publ. Astron. Soc. Aust. 23, 1, 1-11, DOI: 10.1071/AS05041.
  • Prialnik, D., and R. Merk (2008), Growth and evolution of small porous icy bodies with an adaptive-grid thermal evolution code. I. Application to Kuiper Belt objects and Enceladus, Icarus 197, 1, 211-220, DOI: 10.1016/j.icarus.2008. 03.024.
  • Prialnik, D., A. Bar-Nun, and M. Podolak (1987), Radiogenic heating of comets by Al26 and implications for their time of formation, The Astrophys. J. 319, 993-1002.
  • Robuchon, G., G. Choblet, G. Tobie, O. Cadek, C. Sotin, and O. Grasset (2010), Coupling of thermal evolution and despinning of early Iapetus, Icarus 207, 2, 959-971, DOI: 10.1016/j.icarus.2009.12.002.
  • Roscoe, R. (1952), The viscosity of suspensions of rigid spheres, Brit. J. Appl. Phys. 3, 8, 267-269.
  • Rothery, D.A. (1992), Satellites of the Outer Planets, Clarendon Press, Oxford. Rubin, A.E., J.M. Trigo-Rodrıguez, H. Huber, and J.T. Wasson (2007), Progressive alteration of CM carbonaceous chondrites, Geochem. Cosmochim. Acta 71, 9, 2361-2382, DOI: 10.1016/j.gca.2007.02.008.
  • Rutter, E.H., S. Llana-Funez, and K.H. Brodie (2009), Dehydration and deformation of intact cylinders of serpentinite, J. Struct. Geol. 31, 1, 29-43, DOI: 10.1016/j.jsg.2008.09.008.
  • Schenk, P., D.P. Hamilton, R.E. Johnson, W.B. McKinnon, C. Paranicas, J. Schmidt, and M.R. Showalter (2011), Plasma, plumes and rings: Saturn system dynamics as recorded in global color patterns on its midsize icy satellites, Icarus 211, 1, 740-757, DOI: 10.1016/j.icarus.2010.08.016.
  • Schubert, G., T. Spohn, and R.T. Reynolds (1986), Thermal histories, compositions and internal structures of the moons of the solar system. In: J.A. Burns and M.S. Matthews (eds.), Satellites, The University of Arizona Press, Tucson, 224-292.
  • Schubert, G., D.L. Turcotte, and P. Olson (eds.) (2001), Mantle Convection in the Earth and Planets, Cambridge University Press, Cambridge, 940 pp., DOI: 10.1017/CBO9780511612879.
  • Schubert, G., J.D. Anderson, B.J. Travis, and J. Palguta (2007), Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating, Icarus 188, 2, 345-355, DOI: 10.1016/j.icarus.2006.12.012.
  • Schubert, G., H. Hussmann, V. Lainey, D.L. Matson, W.B. McKinnon, F. Sohl, C. Sotin, G. Tobie, D. Turrini, and T. Van Hoolst (2010), Evolution of icy satellites, Space Sci. Rev. 153, 1, 447-484, DOI: 10.1007/s11214-010-9635-1.
  • Sharpe, H.N., and W.R. Peltier (1978), Parameterized mantle convection and the Earth’s thermal history, Geophys. Res. Lett. 5, 9, 737-740, DOI: 10.1029/ GL005i009p00737.
  • Showman, A.P., and R. Malhotra (1999), The Galilean satellites, Science 286, 5437, 77-84, DOI: 10.1126/science.286.5437.77.
  • Sinha, M., and R. Evans (2004), Mid-ocean ridges: Hydrothermal interactions between the lithosphere and oceans. In: C.R. German, J. Lin, L.M. Parson (eds.), Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans, AGU Press, Washington, 19-62.
  • Sohl, F., T. Spohn, D. Breuer, and K. Nagel (2002), Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites, Icarus 157, 1, 104-119, DOI: 10.1006/icar.2002.6828.
  • Sohl, F., M. Choukroun, J. Kargel, J. Kimura, R. Pappalardo, S. Vance, and M. Zolotov (2010), Subsurface water oceans on icy satellites: Chemical composition and exchange processes, Space Sci. Rev. 153, 1-4, 485-510, DOI: 10.1007/s11214-010-9646-y.
  • Solomatov, V.S. (1995), Scaling of temperature- and stress-dependent viscosity convection, Phys. Fluids 7, 2, 266-274, DOI: 10.1063/1.868624.
  • Stein, C., S. Stein, and A. Pelayo (1995), Heat flow and hydrothermal circulation. In: S.E. Humphris, R.A. Zierenberg, L.S. Mullineaux, and R.E. Thomson (eds.), Seafloor Hydrothermal Systems, American Geophysical Union, Washington, D.C., 425-445, DOI: 10.1029/GM091p0425.
  • Tomeoka, K., and P.R. Buseck (1988), Matrix mineralogy of the Orgueil CI carbonaceous chondrite, Geochim. Cosmochim. Ac. 52, 6, 1627-1640, DOI: 10.1016/0016-7037(88)90231-1.
  • Travis, B.J., J. Palguta, and G. Schhubert (2012), A whole-moon thermal history model of Europa: Impact of hydrothermal circulation and salt transport, Icarus 218, 2, 1006-1019, DOI: 10.1016/j.icarus.2012.02.008.
  • Turcotte, D.L., and G. Schubert (eds.) (2002). Geodynamics, 2nd ed., Cambridge University Press, Cambridge, 450 pp.
  • Vance, S., J. Harnmeijer, J. Kimura, H. Hussmann, B. DeMartin, and J.M. Brown (2007), Hydrothermal systems in small ocean planets, Astrobiology 7, 6, 987-1005, DOI: 10.1089/ast.2007.0075.
  • Velbel, M.A., D.T. Long, and J.L. Gooding (1991), Terrestrial weathering of Antarctic stone meteorites: Formation of Mg-carbonates on ordinary chondrites, Geochim. Cosmochim. Ac. 55, 1, 67-76, DOI: 10.1016/0016-7037 (91)90400-Y.
  • Velbel, M.A., E.K. Tonui, and M.E. Zolensky (2012), Replacement of olivine by serpentine in the carbonaceous chondrite Nogoya (CM2), Geochim. Cosmochim. Ac. 87, 117-135, DOI: 10.1016/j.gca.2012.03.016.
  • Walsh, J.B., and W.E. Brice (1984), The effect of pressure on porosity and the transport properties of rock, J. Geophys. Res. 89, NB11, 9425-9432, DOI: 10.1029/JB089iB11p09425.
  • Weisberg, M.K., T.J. McCoy, and A.N. Krot (2006), Systematics and evaluation of meteorite classification. In: D.S. Lauretta and H.Y. McSween Jr. (eds.), Meteorites and the Early Solar System II, University of Arizona Press, Tuscon, 19-52.
  • Young, E.D., K.K. Zhang, and G. Schubert (2003), Conditions for pore water convection within carbonaceous chondrite parent bodies — implications for planetesimal size and heat production, Earth Planet. Sci. Lett. 213, 3-4, 249-259, DOI: 10.1016/S0012-821X(03)00345-5.
  • Zolotov, M.Y. (2007), An oceanic composition on early and today’s Enceladus, Geophys. Res. Lett. 34, 23, L23203, DOI: 10.1029/2007GL031234.
  • Zolotov, M.Y., and M.V. Mironenko (2007), Hydrogen chloride as a source of acid fluids in parent bodies of chondrites. In: 38th Lunar and Planetary Science Conference, Abstract #2340.
  • Zolotov, M.Y., and E.L. Shock (2001), Composition and stability of salts on the surface of Europa and their oceanic origin, J. Geophys. Res. 106, E12, 32815- 32827, DOI: 10.1029/2000JE001413.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5ec1ae8-04ad-42aa-a140-56d966a98e66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.