Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents noise measurements in low-resistance photodetectors using a crosscorrelation-based transimpedance amplifier. Such measurements usually apply a transimpedance amplifier design to provide a current fluctuation amplification. In the case of low-resistance sources, the measurement system causes additional relevant system noise which can be higher than noise generated in a tested detector. It mainly comes from the equivalent input voltage noise of the transimpedance amplifier. In this work, the unique circuit and a three-step procedure were used to reduce the floor noise, covering the measured infrared detector noise, mainly when operating with no-bias or low-bias voltage. The modified circuit and procedure to measure the noise of unbiased and biased detectors characterized by resistances much lower than 100 Ω were presented. Under low biases, the reference low-resistance resistors tested the measurement system operation and techniques. After the system verification, noise characteristics in low-resistance InAs and InAsSb infrared detectors were also measured.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e141126
Opis fizyczny
Bibliogr. 18 poz., rys., wykr., tab.
Twórcy
autor
- Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
autor
- Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
autor
- Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
- [1] Vandamme, L. K. J. Noise as a diagnostic tool for quality and reliability of electronic devices. IEEE Trans. Electron. Devices. 41, 2176–2187 (1994). https://doi.org/10.1109/16.333839
- [2] Kotarski, M. M. & Smulko, J. M. Noise measurement set-ups for fluctuations-enhanced gas sensing. Metrol. Meas. Syst. 16, 457–464 (2009). http://www.metrology.pg.gda.pl/full/2009/M&MS_2009_457.pdf
- [3] Jones, B. K. Electrical noise as a reliability indicator in electronic devices and components. IEE Proc. G 149, 13–22 (2002). https://doi.org/10.1049/ip-cds:20020331
- [4] Dyakonova, N., Karandashev, S. A., Levinshtein, M .E., Matveev, B. A. & Remennyi, M. A. Low frequency noise in p-InAsSbP / n-InAs infrared photodiodes. Semicond. Sci. Technol. 33, 065016 (2018). https://doi.org/10.1088/1361-6641/aac15d
- [5] Ciura, L., Kolek, A., Michalczewski, K., Hackiewicz, K. & Martyniuk, P. 1/f noise in InAs/InAsSb superlattice photoconductors. IEEE Trans. Electron Devices. 67, 3205–3210 (2020). https://doi.org/10.1109/TED.2020.2998449
- [6] Savich, G. R., Pedrazzani, J. R., Sidor, D. E., Maimon, S. & Wicks, G. W. Dark current filtering in unipolar barrier infrared detectors. Appl. Phys. Lett. 99, 121112 (2011). https://doi.org/10.1063/1.3643515
- [7] Cervera, C. et al. Dark current and noise measurements of an InAs/GaSb superlattice photodiode operating in the midwave infrared domain. J. Electron. Mater. 41, 2714–2718 (2012). https://doi.org/10.1007/s11664-012-2035-4
- [8] Ciofi, C., Giusi, G., Scandurra, G. & Neri, B. Dedicated instrumentation for high sensitivity, low frequency noise measurement systems. Fluct. Noise Lett. 4, L385–L402 (2004). https://doi.org/10.1142/S0219477504001963
- [9] Horowitz, P. & Hill, W. The Art of Electronics (Cambridge University Press, 2015).
- [10] Achtenberg, K. et al. Low-frequency noise measurements of IR photodetectors with voltage cross correlation system. Measurement 183, 109867 (2021). https://doi.org/10.1016/j.measurement.2021.109867
- [11] Ciura, Ł., Kolek, A., Gawron, W., Kowalewski, A. & Stanaszek, D. Measurements of low frequency noise of infrared photodetectors with transimpedance detection system. Metrol. Meas. Syst. 21, 461–472 (2014). https://doi.org/10.2478/mms-2014-0039
- [12] Giusi, G., Pace, C. & Crupi, F. Cross-correlation-based trans-impedance amplifier for current noise measurements. Int. J. Circ. Theor. Appl. 37, 781–792 (2008). https://doi.org/10.1002/cta.517
- [13] Jaworowicz, K., Ribet-Mohamed, I., Cervera, C., Rodriguez, J. B. & Christol, P. Noise characterization of midwave infrared InAs/GaSb superlattice pin photodiode. IEEE Photon. Technol. 23, 242–244 (2011). https://doi.org/10.1109/lpt.2010.2093877
- [14] Taalat, R., Christol, P. & Rodriguez, J. Dark current and noise measurements of an InAs/GaSb superlattice photodiode operating in the midwave infrared domain. J. Electron. Mater. 41, 2714–2718 (2012). https://doi.org/10.1007/s11664-012-2035-4
- [15] Ramos, D. et al. 1/f noise and dark current correlation in midwave InAs/GaSb Type-II superlattice IR detectors. Phys. Status Solidi A. 218, 2000557 (2020). https://doi.org/10.1002/pssa.202000557
- [16] De Iacovo, A., Venettacci, C., Colace, L. & Foglia, S. Noise performance of PbS colloidal quantum dot photodetectors. Appl. Phys. Lett. 111, 211104 (2017). https://doi.org/10.1063/1.5005805
- [17] Rais, M. H. et al. HgCdTe photovoltaic detectors fabricated using a new junction formation technology. Microelectron. J. 31, 545–551 (2000). https://doi.org/10.1016/s0026-2692(00)00028-8
- [18] Achtenberg, K., Mikołajczyk, J., Ciofi, C., Scandurra, G. & Bielecki, Z. Low-noise programmable voltage source. Electronics 9, 1245 (2020). https://doi.org/10.3390/electronics9081245
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5eb5154-b3ee-40bf-9e1d-488f44b0d201