Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The modified friction stir clinching (MFSC) of 5083 aluminum alloy to brass using pure Zn interlayer has been explored and elucidated for the first time. By that, the influence of the Zn interlayer thickness on the microstructure and the mechanical properties of the 5083/brass joint was investigated. The attained data have revealed that the intermetallic compound (IMC) layer thickness was mainly influenced by the Zn interlayer. The use of the Zn interlayer restrained the creation of brittle Al–Cu IMCs such as Al4Cu9 during the MFSC process and, in return, softer phases such as Cu4Zn, CuZn5, and CuZn were formed. It was also found that with increasing the thickness of the Zn interlayer from 50 to 100 µm, the thickness of the brazed zone increased and the tensile/shear strength of the spot welds significantly improved from 5250 to 8490 N (approximately 60% increment over the welded sample with 50-µm-thick Zn) which can be ascribed to supreme bonding and homogeneous brazing zone at the interface.
Czasopismo
Rocznik
Tom
Strony
219--229
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
- School of Urban Construction, Wuchang University of Technology, Wuhan 430223, China
autor
- School of Urban Construction, Wuchang University of Technology, Wuhan 430223, China
autor
- Department of Materials Engineering, South Tehran Branch, Islamic Azad University, 14598-53849 Tehran, Iran
Bibliografia
- [1] Gao P, Zhang Y, Mehta KP. Metallurgical and mechanical properties of Al–Cu joint by friction stir spot welding and modified friction stir clinching. Met Mater Int. 2020. https://doi.org/10.1007/s12540-020-00759-w.
- [2] Regensburg A, Petzoldt F, Benss T, Bergmann JP. Liquid inter-layer formation during friction stir spot welding of aluminum/copper. Weld World. 2019;63:117–25.
- [3] Muhammad NA, Wu CS, Tian W. Effect of ultrasonic vibration on the intermetallic compound layer formation in Al/Cu friction stir weld joints. J Alloy Compd. 2019;758:512–22.
- [4] Shankar S, Vilaça P, Dash P, Chattopadhyaya S, Hloch S. Joint strength evaluation of friction stir welded Al–Cu dissimilar alloys. Measurement. 2019;146:892–902.
- [5] Li WY, Chu Q, Yang XW, Shen JJ, Vairis A, Wang WB. Microstructure and morphology evolution of probeless friction stir spot welded joints of aluminum alloy. J Mater Process Technol. 2018;252:69–80.
- [6] Dai X, Zhang H, Wang B, Ji A, Liu J, Feng J. Improving weld strength of arc-assisted ultrasonic seam welded Mg/Al joint with Sn interlayer. Mater Des. 2016;98:262–71.
- [7] Ni Z, Zhao H, Mi P, Ye F. Microstructure and mechanical performances of ultrasonic spot welded Al/Cu joints with Al 2219 alloy particle interlayer. Mater Des. 2016;92:779–86.
- [8] Esmaeili A, Rajani HRZ, Sharbati M, Givi MKB, Shamanian M. The role of rotation speed on intermetallic compounds formation and mechanical behavior of friction stir welded brass/aluminum 1050 couple. Intermetallics. 2011;19:1711–9.
- [9] Elsa M, Khorram A, Ojo OO, Paidar M. Effect of bonding pres-sure on microstructure and mechanical properties of aluminum/copper diffusion-bonded joint. Sādhanā. 2019;44:126.
- [10] Safarzadeh A, Paidar M, Youzbashi-zade H. A study on the effects bonding temperature and holding time on mechanical and metallurgical properties of Al–Cu dissimilar joining by DFW. Trans Indian Inst Met. 2017;70:125–31.
- [11] Shamsipur A, Anvari A, Keyvani A. Improvement of microstructure and corrosion properties of friction stir welded AA5754 by adding Zn interlayer. Int J Miner Metall Mater. 2018;25:967–73.
- [12] Balasundaram R, Patel VK, Bhole SD, Chen DL. Effect of zinc interlayer on ultrasonic spot welded aluminum-to-copper joints. Mater Sci Eng A. 2014;607:277–86.
- [13] Huang G, Feng X, Shen Y, Zheng Q, Zhao P. Friction stir brazing of 6061 aluminum alloy and H62 brass: evaluation of microstructure, mechanical and fracture behavior. Mater Des. 2016;99:403–11.
- [14] Zhou X, Chen Y, Li S, Huang Y, Hao K, Peng P. Friction stir spot welding-brazing of Al and hot-dip aluminized Ti alloy with Zn interlayer. Metals. 2018;8:922.
- [15] Paidar M, Tahani K, Vignesh RV, Ojo OO, Ezatpour HR, Moharrami A. Modified friction stir clinching of 2024–T3 to 6061–T6 aluminium alloy: effect of dwell time and precipitation-hardening heat treatment. Mater Sci Eng A. 2020;791:139734.
- [16] Mehta KP, Patel R, Vyas H, Memon S, Vilaça P. Repairing of exit-hole in dissimilar Al–Mg friction stir welding: process and microstructural pattern. Manuf Lett. 2020;23:67–70.
- [17] Sahu PK, Pal S, Shi Q. Effect of solid solution phase constitution on dissimilar Al/Cu FSW using Zn as an alloying element at the joint interface. SN Appl Sci. 2019;1:1659. https://doi.org/10.1007/s42452-019-1708-5.
- [18] Ji S, Niu S, Liu J, Meng X. Friction stir lap welding of Al to Mg assisted by ultrasound and a Zn interlayer. J Mater Process Technol. 2019;267:141–51.
- [19] Zhang G, Zhang L, Kang C, Zhang J. Development of friction stir spot brazing (FSSB). Mater Des. 2016;94:502–14.
- [20] Mehta KP, Badheka VJ. A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Mater Manuf Process. 2016;31:233–54.
- [21] Mehta KP, Badheka VJ. Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum joints. J Mater Process Technol. 2017;239:336–45.
- [22] Patel NP, Parlikar P, Dhari RS, Mehta K, Pandya M. Numerical modelling on cooling assisted friction stir welding of dissimilar Al–Cu joint. J Manuf Process. 2019;47:98–109.
- [23] Boucherit A, Avettand-Fènoël MN, Taillard R. Effect of a Zn interlayer on dissimilar FSSW of Al and Cu. Mater Des. 2017;124:87–99.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5ea0636-ffa0-43aa-bde9-111392afb1fc