PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strength analysis of a large-size supporting structure for an offshore wind turbine

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The offshore wind power industry is the branch of electric energy production from renewable sources which is most intensively developed in EU countries. At present, there is a tendency to install larger-power wind turbines at larger distances from the seashore, on relatively deep waters. Consequently, technological solutions for new supporting structures intended for deeper water regions are undergoing rapid development now. Various design types are proposed and analysed, starting from gravitational supports (GBS), through monopiles and 3D frame structures (jackets, tripods), and ending with floating and submerged supports anchored to the seabed by flexible connectors, including TLP type solutions. The article presents the results of examination of an untypical large-size gravitational support intended for waters with the depth of up to 40 m. Firstly, a general concept of the new design is presented, while the next basic part of the article describes the support design in detail and provides its strength analysis. The examined support has the form of a large steel container consisting of conical segments. The strength analysis was conducted using the finite element method (FEM), in accordance with the standard DNVGL-ST-0126. Modifications introduced to the most heavily loaded structural node of the support, which was the set of base bottom trusses, is also included. The results of the performed analysis prove that the presented concept of supporting structure for a 7MW turbine meets fundamental strength criteria. The nonlinear buckling analysis was performed to evaluate the critical force acting on the support, which turned out to be 1.44 times as large as the maximum load of the wind turbine. Potentially important issues for further analyses have been identified as those resulting from the asymmetry of basic loads acting on the support.
Rocznik
Tom
S 1
Strony
156--165
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
  • Gdańsk University of Technology 11/12 Narutowicza St. 80 - 233 Gdańsk Poland
Bibliografia
  • 1. European Commission, A policy framework for climate and energy in the period from 2020 up to 2030, impact assessment, COM(2014) 15 final, SWD(2014) 15 final, EurLex. 2014
  • 2. European Commission, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on Launching the public consultation process on a new energy market design, EurLex. 2015
  • 3. Wind in power, 2015 European statistics, European Wind Energy Association, February 2016
  • 4. The European offshore wind industry - key trends and statistics 2015, A report by the European Wind Energy Association, February 2016
  • 5. Annual statistics, WindEurope, 2016
  • 6. Wind Energy Scenarios for 2030, A report by the European Wind Energy Association - August 2015
  • 7. Laszlo Arany, S. Bhattacharya, John Macdonald, S.J. Hogan, Design of monopiles for offshore wind turbines in 10 steps, Soil Dynamics and Earthquake Engineering, Volume 92, January 2017, pp. 126-152, ISSN 0267-7261, http://dx.doi. org/10.1016/j.soildyn.2016.09.024.
  • 8. Swagata Bisoi, Sumanta Haldar, Design of monopile supported offshore wind turbine in clay considering dynamic soil–structure-interaction, Soil Dynamics and Earthquake Engineering, Volume 73, June 2015, pp. 103-117, ISSN 0267-7261, http://dx.doi.org/10.1016/j. soildyn.2015.02.017.
  • 9. A.T. Myers, S.R. Arwade, V. Valamanesh, S. Hallowell, W. Carswell, Strength, stiffness, resonance and the design of offshore wind turbine monopiles, Engineering Structures, Volume 100, 1 October 2015, pp. 332-341, ISSN 0141-0296, http://dx.doi.org/10.1016/j.engstruct.2015.06.021.
  • 10. Hezhen Yang, Yun Zhu, Qijin Lu, Jun Zhang, Dynamic reliability based design optimization of the tripod substructure of offshore wind turbines, Renewable Energy, Volume 78, June 2015, pp. 16-25, ISSN 0960-1481, http:// dx.doi.org/10.1016/j.renene.2014.12.061.
  • 11. B. Yeter, Y. Garbatov, C. Guedes Soares, Fatigue damage assessment of fixed offshore wind turbine tripod support structures, Engineering Structures, Volume 101, 15 October 2015, pp. 518-528, ISSN 0141-0296, http://dx.doi. org/10.1016/j.engstruct.2015.07.038.
  • 12. K.H. Chew, E.Y.K. Ng, K. Tai, M. Muskulus, D. Zwick, Offshore Wind Turbine Jacket Substructure: A Comparison Study between Four-Legged and Three-Legged Designs, J Ocean Wind Energy, 1 (2) (2014), pp. 74–81
  • 13. Sebastian Kelma, Peter Schaumann, Probabilistic Fatigue Analysis of Jacket Support Structures for Offshore Wind Turbines Exemplified on Tubular Joints, Energy Procedia, Volume 80, 2015, pp. 151-158, ISSN 1876-6102, http://dx.doi. org/10.1016/j.egypro.2015.11.417.
  • 14. M.D. Esteban, B. Couñago, J.S. López-Gutiérrez, V. Negro, F. Vellisco, Gravity based support structures for offshore wind turbine generators: Review of the installation process, Ocean Engineering, Volume 110, Part A, 1 December 2015, pp. 281-291, ISSN 0029-8018, http://dx.doi.org/10.1016/j. oceaneng.2015.10.033.
  • 15. W.Z. Lim, R.Y. Xiao, Fluid-structure interaction analysis of gravity-based structure (GBS) offshore platform with partitioned coupling method, Ocean Engineering, Volume 114, 1 March 2016, pp. 1-9, ISSN 0029-8018, http://dx.doi. org/10.1016/j.oceaneng.2015.12.059.
  • 16. Marc Costa Ros, Offshore wind industry review of Gravity Base Foundations (GBSs), Identifying the key barriers to large scale commercialisation of gravity based structures (gbss) in the offshore wind industry, report, The Carbon Trust, October 2015
  • 17. Simon Lefebvre, Maurizio Collu, Preliminary design of a floating support structure for a 5 MW offshore wind turbine, Ocean Engineering, Volume 40, February 2012, pp. 15-26, ISSN 0029-8018, http://dx.doi.org/10.1016/j. oceaneng.2011.12.009.
  • 18. Michael Borg, Maurizio Collu, A Comparison on the Dynamics of a Floating Vertical Axis Wind Turbine on Three Different Floating Support Structures, Energy Procedia, Volume 53, 2014, pp. 268-279, ISSN 1876-6102, http://dx.doi.org/10.1016/j.egypro.2014.07.236.
  • 19. Matthew Hall, Brad Buckham, Curran Crawford, Hydrodynamics-based floating wind turbine support platform optimization: A basis function approach, Renewable Energy, Volume 66, June 2014, pp. 559-569, ISSN 0960-1481, http://dx.doi.org/10.1016/j.renene.2013.12.035.
  • 20. M. Collu and M. Borg, 11 - Design of floating offshore wind turbines, In Offshore Wind Farms, Woodhead Publishing, 2016, pp. 359-385, ISBN 9780081007792, http:// dx.doi.org/10.1016/B978-0-08-100779-2.00011-8.
  • 21. Yichao Liu, Sunwei Li, Qian Yi, Daoyi Chen, Developments in semi-submersible floating foundations supporting wind turbines: A comprehensive review, Renewable and Sustainable Energy Reviews, Volume 60, July 2016, pp. 433-449, ISSN 1364-0321, http://dx.doi.org/10.1016/j. rser.2016.01.109.
  • 22. Frank Adam, Thomas Myland, Burkhard Schuldt, Jochen Großmann, Frank Dahlhaus, Evaluation of internal force superposition on a TLP for wind turbines, Renewable Energy, Volume 71, November 2014, pp. 271-275, ISSN 0960-1481, http://dx.doi.org/10.1016/j.renene.2014.05.019.
  • 23. Ali Nematbakhsh, Erin E. Bachynski, Zhen Gao, Torgeir Moan, Comparison of wave load effects on a TLP wind turbine by using computational fluid dynamics and potential flow theory approaches, Applied Ocean Research, Volume 53, October 2015, pp. 142-154, ISSN 0141-1187, http://dx.doi.org/10.1016/j.apor.2015.08.004.
  • 24. Ali M. Abdelsalam, K. Boopathi, S. Gomathinayagam, S.S. Hari Krishnan Kumar, Velraj Ramalingam, Experimental and numerical studies on the wake behavior of a horizontal axis wind turbine, Journal of Wind Engineering and Industrial Aerodynamics, Volume 128, May 2014, pp. 54-65, ISSN 0167-6105, http://dx.doi.org/10.1016/j. jweia.2014.03.002.
  • 25. J.T. Cieslinski, R. Mosdorf, Gas bubble dynamics— experiment and fractal analysis, International Journal of Heat and Mass Transfer, Volume 48, Issue 9, April 2005, pp. 1808-1818, ISSN 0017-9310, http://dx.doi.org/10.1016/j. ijheatmasstransfer.2004.12.002.
  • 26. Chi-Jeng Bai, Wei-Cheng Wang, Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs), Renewable and Sustainable Energy Reviews, Volume 63, September 2016, pp. 506-519, ISSN 1364-0321, http://dx.doi. org/10.1016/j.rser.2016.05.078.
  • 27. Krzysztof J. Kalinski, Marek A. Galewski, Chatter vibration surveillance by the optimal-linear spindle speed control, Mechanical Systems and Signal Processing, Volume 25, Issue 1, January 2011, pp. 383-399, ISSN 0888-3270, http:// dx.doi.org/10.1016/j.ymssp.2010.09.005.
  • 28. Dariusz Mikielewicz, Jarosław Mikielewicz, Joanna Tesmar, Impr
  • 29. oved semi-empirical method for determination of heat transfer coefficient in flow boiling in conventional and small diameter tubes, International Journal of Heat and Mass Transfer, Volume 50, Issues 19–20, September 2007, pp. 3949-3956, ISSN 0017-9310, http://dx.doi.org/10.1016/j. ijheatmasstransfer.2007.01.024.
  • 30. Sebastian Schafhirt, Ana Page, Gudmund Reidar Eiksund, Michael Muskulus, Influence of Soil Parameters on the Fatigue Lifetime of Offshore Wind Turbines with Monopile Support Structure, Energy Procedia, Volume 94, September 2016, pp. 347-356, ISSN 1876-6102, http:// dx.doi.org/10.1016/j.egypro.2016.09.194.
  • 31. K Skalski, A Morawski, W Przybylski, Analysis of contact elastic-plastic strains during the process of burnishing, International Journal of Mechanical Sciences, Volume 37, Issue 5, 1995, pp. 461-472, ISSN 0020-7403, http://dx.doi. org/10.1016/0020-7403(94)00083-V.
  • 32. T.A. Stolarski, Wear of water-lubricated composite materials, Wear, Volume 58, Issue 1, 1980, pp. 103-108, ISSN 00431648, http://dx.doi.org/10.1016/0043-1648(80)90215-X.
  • 33. Zhiyu Jiang, Limin Yang, Zhen Gao, Torgeir Moan, Numerical Simulation of a Wind Turbine with a Hydraulic Transmission System, Energy Procedia, Volume 53, 2014, pp. 44-55, ISSN 1876-6102, http://dx.doi.org/10.1016/j. egypro.2014.07.214.
  • 34. Niklas, Karol. “Calculations of notch stress factor of a thinwalled spreader bracket fillet weld with the use of a local stress approach.” Engineering Failure Analysis 45 (2014), pp. 326-338.
  • 35. J.A. Sainz, New Wind Turbine Manufacturing Techniques, Procedia Engineering, Volume 132, 2015, pp. 880-886, ISSN 1877-7058, http://dx.doi.org/10.1016/j.proeng.2015.12.573.
  • 36. C. Dymarski, P. Dymarski, Developing methodology for model tests of floating platforms in low-depth towing tank, Archives of Civil and Mechanical Engineering, Volume 16, Issue 1, January 2016, pp. 159-167, ISSN 1644-9665, http:// dx.doi.org/10.1016/j.acme.2015.07.003.
  • 37. Łuczak M., Manzato S., Peeters B., Branner K., Berring P., Kahsin M.: Updating Finite Element Model of a Wind Turbine Blade Section Using Experimental Modal Analysis Results, Shock and Vibration. -Vol. 2014, iss. 1 (2014), pp.71-82
  • 38. A. Cichański, “The influence of mesh morphology on the SCF in 2D FEM analysis of flat bars with opposite V-notch under tension” in Proceedings of 22nd International Conference on Engineering Mechanics 2016, edited by Igor Zolotarev and Vojtech Radolf, Engineering Mechanics 2016, pp. 110-113 (Svratka, Czech Republic, 2016).
  • 39. Deja, M. & Siemiatkowski, M.S., Feature-based generation of machining process plans for optimised parts manufacture, J Intell Manuf (2013) 24: 831. doi:10.1007/s10845-012-0633-x
  • 40. Jiahai Yuan, Chunning Na, Yan Xu, Changhong Zhao, Wind turbine manufacturing in China: A review, Renewable and Sustainable Energy Reviews, Volume 51, November 2015, pp. 1235-1244, ISSN 1364-0321, http://dx.doi.org/10.1016/j. rser.2015.07.048.
  • 41. A. Zieliński, H. Smoleńska, W. Serbiński, W. Kończewicz, A. Klimpel, Characterization of the Co-base layers obtained by laser cladding technique, Journal of Materials Processing Technology, Volumes 164–165, 15 May 2005, pp. 958-963, ISSN 0924-0136, http://dx.doi.org/10.1016/j. jmatprotec.2005.02.093.
  • 42. Magdalena Mieloszyk, Wiesław Ostachowicz, An application of Structural Health Monitoring system based on FBG sensors to offshore wind turbine support structure model, Marine Structures, Volume 51, January 2017, pp. 65-86, ISSN 0951-8339, http://dx.doi.org/10.1016/j. marstruc.2016.10.006.
  • 43. D.J.M. Fallais, S. Voormeeren, E. Lourens, Vibrationbased Identification of Hydrodynamic Loads and System Parameters for Offshore Wind Turbine Support Structures, Energy Procedia, Volume 94, September 2016, pp. 191-198, ISSN 1876-6102, http://dx.doi.org/10.1016/j. egypro.2016.09.222.
  • 44. M. Siemiatkowski, W. Przybylski, Simulation studies of process flow with in-line part inspection in machining cells, Journal of Materials Processing Technology, Volume 171, Issue 1, 10 January 2006, pp. 27-34, ISSN 0924-0136, http://dx.doi.org/10.1016/j.jmatprotec.2005.06.051.
  • 45. Binita Shrestha, Martin Kühn, Adaptation of Controller Concepts for Support Structure Load Mitigation of Offshore Wind Turbines, Energy Procedia, Volume 94, September 2016, pp. 241-248, ISSN 1876-6102, http:// dx.doi.org/10.1016/j.egypro.2016.09.231.
  • 46. Wojciech Litwin, Influence of local bush wear on water lubricated sliding bearing load carrying capacity, Tribology International, Volume 103, November 2016, pp. 352-358, ISSN 0301-679X, http://dx.doi.org/10.1016/j. triboint.2016.06.044.
  • 47. Standard DNVGL-ST-0126, Support structures for wind turbines, DNV GL AS, April 2016
  • 48. VON DER HAAR, C and MARX, S. Design aspects of concrete towers for wind turbines. J. S. Afr. Inst. Civ. Eng. 2015, vol.57, n.4, pp. 30-37. ISSN 2309-8775. http://dx.doi. org/10.17159/2309-8775/2015/v57n4a4.
  • 49. DNV-OS-B101, OFFSHORE STANDARD, METALLIC MATERIALS, Det Norske Veritas 2009
  • 50. EN 10025-2 – Non-alloy structural steels, European Committee for Standardization, 2005
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5e98e69-ebaf-4862-b704-d824576e90c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.