ON THE S-MATRIX OF SCHRÖDINGER OPERATOR WITH NONLOCAL δ -INTERACTION

Anna Główczyk and Sergiusz Kużel

Communicated by Alexander Gomilko

Abstract. Schrödinger operators with nonlocal δ -interaction are studied with the use of the Lax-Phillips scattering theory methods. The condition of applicability of the Lax-Phillips approach in terms of non-cyclic functions is established. Two formulas for the S-matrix are obtained. The first one deals with the Krein-Naimark resolvent formula and the Weyl-Titchmarsh function, whereas the second one is based on modified reflection and transmission coefficients. The S-matrix S(z) is analytical in the lower half-plane \mathbb{C}_- when the Schrödinger operator with nonlocal δ -interaction is positive self-adjoint. Otherwise, S(z) is a meromorphic matrix-valued function in \mathbb{C}_- and its properties are closely related to the properties of the corresponding Schrödinger operator. Examples of S-matrices are given.

Keywords: Lax–Phillips scattering scheme, scattering matrix, S-matrix, nonlocal δ -interaction, non-cyclic function.

Mathematics Subject Classification: 47B25, 47A40.

1. INTRODUCTION

Theory of non self-adjoint operators attracts a steady interests in various fields of mathematics and physics, see, e.g., [7] and the reference therein. This interest grew considerably due to the recent progress in theoretical physics of pseudo-Hermitian Hamiltonians [9].

In the present paper we study non-self-adjoint Schrödinger operators with nonlocal point interaction. Self-adjoint operators have been investigated by Nizhnik et al. [4–6, 10]. The case of non-self-adjoint operators with nonlocal point interaction is more complicated and it requires more detailed analysis. One of the simplest models of a non-local δ -interaction is

$$-\frac{d^2}{dx^2} + a < \delta, \cdot > \delta(x) + < \delta, \cdot > q(x) + (\cdot, q)\delta(x), \quad a \in \mathbb{C}, \tag{1.1}$$

where δ is the delta-function, $q \in L_2(\mathbb{R})$, and (\cdot, \cdot) is the inner product (linear in the first argument) in $L_2(\mathbb{R})$. The expression (1.1) determines the following operator acting in $L_2(\mathbb{R})$:

$$H_{aq}f = -\frac{d^2f}{dx^2} + f(0)q(x), \tag{1.2}$$

$$\mathcal{D}(H_{aq}) = \left\{ f \in W_2^2(\mathbb{R} \setminus \{0\}) : \begin{array}{c} f_s(0) = 0 \\ f_s'(0) = a f_r(0) + (f, q) \end{array} \right\}, \tag{1.3}$$

where
$$f_s(0) = f(0+) - f(0-)$$
 and $f_r(0) = \frac{f(0+) + f(0-)}{2}$.

The operator H_{aq} is self-adjoint if and only if $a \in \mathbb{R}$ and it can be interpreted as a Hamiltonian corresponding to the non-local δ -interaction (1.1). Setting q = 0, we obtain an operator $H_a := H_{a0}$ generated by the ordinary δ -interaction

$$-\frac{d^2}{dx^2} + a < \delta, \cdot > \delta(x).$$

The spectral analysis of non-self-adjoint H_{aq} ($a \in \mathbb{C} \setminus \mathbb{R}$) was carried out in [21]. One of interesting features is that non-real a determines the measure of non-self-adjointness of H_{aq} , while the function q is responsible for the appearance of exceptional points and eigenvalues on continuous spectrum [21, Example 5.3 and Section 6].

In the present paper, we investigate H_{aq} by the scattering theory methods. For the case a=0, the scattering matrix $S(\delta)$ of H_{0q} was constructed in [4, Section 5] with the use of modified Jost solutions. In contrast to [4] we study the general case $a \in \mathbb{C}$ with the use of an operator-theoretical interpretation of the Lax-Phillips approach in scattering theory [23] that was consistently developed in [12,16,18,19]. We prefer this approach because it involves a simple algorithm for an explicit calculation of the analytic continuation¹⁾ of the scattering matrix into the lower half-plane \mathbb{C}_{-} .

The paper is organized as follows. We begin with presentation of necessary facts about the Lax-Phillips scattering theory. Further, in Section 3, we analyze for which operators H_{aq} one can apply the Lax-Phillips approach. For technical reasons it is convenient to work with unitary equivalent copies $\mathbf{H}_{a\mathbf{q}}$ of the operators H_{aq} acting in the Hilbert space $L_2(\mathbb{R}_+, \mathbb{C}^2)$, see (3.2), (3.3). The main result (Theorem 3.3) implies that $\mathbf{H}_{a\mathbf{q}}$ can be investigated in framework of the Lax-Phillips theory under the condition that \mathbf{q} is non-cyclic with respect to the backward shift operator. For such kind of positive self-adjoint operators $\mathbf{H}_{a\mathbf{q}}$, two formulas of the analytical continuation S(z) of the scattering matrix $S(\delta)$ into \mathbb{C}_- are obtained in Section 4. The first one (4.8) deals with the Krein-Naimark resolvent formula (3.7) and the Weyl-Titchmarsh function (3.9), whereas the second one (4.19) is based on the modified reflection R_z^i and the transmission T_z^i coefficients that is more familiar for non-stationary scattering theory.

We mention that the relationship between scattering matrices and the extension theory subjects like Krein–Naimark formula and Weyl–Titchmarsh function was

[&]quot;The most beautiful and important aspect of the Lax-Phillips approach is that certain analyticity properties of the scattering operator arise naturally" [25, p. 211].

established for various cases [2, 8, 11] and it provides additional possibilities for the study of scattering systems.

In Section 5, the formula (4.8) is used for the definition of S-matrix S(z) for each operator $\mathbf{H}_{a\mathbf{q}}$ (assuming, of course, that \mathbf{q} is non-cyclic). If $\mathbf{H}_{a\mathbf{q}}$ is positive self-adjoint, then the S-matrix is the direct consequence of proper arguments of the Lax-Phillips theory and it coincides with the analytical continuation of the Lax-Phillips scattering matrix into \mathbb{C}_- . Otherwise, S(z) defined by (4.8) is a meromorphic matrix-valued function in \mathbb{C}_- and it can be considered as a characteristic function of $\mathbf{H}_{a\mathbf{q}}$. Lemmas 5.1–5.5 and Corollary 5.6 justify such a point of view by showing a close relationship between properties of non-self-adjoint $\mathbf{H}_{a\mathbf{q}}$ and theirs S-matrices. Examples of S-matrices for various non-cyclic \mathbf{q} are given in Section 5.1.

Throughout the paper, $\mathcal{D}(H)$, $\mathcal{R}(H)$, and $\ker H$ denote the domain, the range, and the null-space of a linear operator H, respectively, whereas $H \upharpoonright_{\mathcal{D}}$ stands for the restriction of H to the set \mathcal{D} and $\bigvee_{t \in \mathbb{R}} X_t$ means the closure of linear span of sets X_t . The symbol $H^2(\mathbb{C}_+)$, where $\mathbb{C}_+ = \{z \in \mathbb{C} : Im \ z > 0\}$ is used for the Hardy space. The Sobolev space is denoted as $W_2^p(I)$ $(I \in \{\mathbb{R}, \mathbb{R}_+\}, p \in \{1, 2\})$.

2. ELEMENTS OF LAX-PHILLIPS SCATTERING THEORY

Here all necessary results about the Lax-Phillips scattering theory are presented. The monographs [23], [20, Chap. III] and the papers [16, 19] are recommended as complementary reading on the subject.

2.1. APPLICABILITY OF THE LAX-PHILLIPS SCATTERING APPROACH

A continuous group of unitary operators W(t) acting in a Hilbert space \mathfrak{W} is a subject of the Lax-Phillips scattering theory [23] if there exist so-called *incoming* D_{-} and outgoing D_{+} subspaces of \mathfrak{W} with properties:

(i)
$$W(t)D_{+} \subset D_{+}, \quad W(-t)D_{-} \subset D_{-}, \quad t \geq 0,$$

(ii)
$$\bigcap_{t>0} W(t)D_{+} = \bigcap_{t>0} W(-t)D_{-} = \{0\}.$$

Conditions (i)–(ii) allow to construct incoming and outgoing spectral representations for the restrictions of W(t) onto the subspaces

$$M_{-} = \bigvee_{t \in \mathbb{R}} W(t)D_{-} \quad \text{and} \quad M_{+} = \bigvee_{t \in \mathbb{R}} W(t)D_{+},$$
 (2.1)

respectively and define the corresponding Lax–Phillips scattering matrix $S(\delta)$ ($\delta \in \mathbb{R}$) whose values are contraction operators [1], [20, Chap. 3].

Furthermore, the additional condition of orthogonality

(iii)

$$D_- \perp D_+$$

guarantees that $S(\delta)$ is the boundary value of a contracting operator-valued function S(z) holomorphic in the lower half-plane \mathbb{C}_{-} [23, p. 52].

Usually, the Lax–Phillips scattering matrix is defined with the use of an operator-differential equation

$$\frac{d^2}{dt^2}u = -Hu, (2.2)$$

where H is a positive²⁾ self-adjoint operator in a Hilbert space \mathfrak{H} . Denote by \mathfrak{H}_H the completion of $\mathcal{D}(H)$ with respect to the norm $\|\cdot\|_H^2 := (H\cdot,\cdot)$.

The Cauchy problem for (2.2) determines a continuous group of unitary operators W(t) in the space

$$\mathfrak{W}=\mathfrak{H}_H\oplus\mathfrak{H}=\left\{\left[\begin{array}{c} u\\v\end{array}\right]\ :\ u\in\mathfrak{H}_H,v\in\mathfrak{H}\right\}.$$

If $H = -\Delta$ and $\mathfrak{H} = L_2(\mathbb{R}^n)$, then (2.2) coincides with the wave equation $u_{tt} = \Delta u$ and the corresponding subspaces D_{\pm} constructed in [23] possess the additional property

$$JD_{-} = D_{+},$$
 (2.3)

where J is a self-adjoint and unitary operator in $\mathfrak W$ (so-called time-reversal operator):

$$J\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u \\ -v \end{bmatrix}. \tag{2.4}$$

Relation (2.3) is a characteristic property of dynamics governed by wave equations.

It is clear that, the existence of subspaces D_{\pm} for W(t) is determined by specific properties of H in (2.2). Before explaining which properties of H are needed, we recall that a symmetric operator B is called *simple* if its restriction on any nontrivial reducing subspace is not a self-adjoint operator. The maximality of B means that there are no symmetric extensions of B. The latter is equivalent to the fact that one of defect numbers of B is equal to zero. In what follows, without loss of generality, we assume that B has zero defect number in \mathbb{C}_+ , i.e., dim ker $(B^* - iI) = 0$, where B^* is the adjoint of B. The latter means that

$$\ker(B^{*2} - \mu^2 I) = \ker(B^* - \mu I), \quad \mu \in \mathbb{C}_-.$$
 (2.5)

Theorem 2.1 ([19,20]). Let H be a positive self-adjoint operator in a Hilbert space \mathfrak{H} . The following are equivalent:

- (i) the group W(t) of solutions of the Cauchy problem of (2.2) has subspaces D_{\pm} with properties (i)–(iii) and (2.3),
- (ii) there exists a simple maximal symmetric operator B acting in a subspace \mathfrak{H}_0 of \mathfrak{H} such that H is an extension (with exit in the space \mathfrak{H}) of the symmetric operator B^2 .

²⁾ i.e. (Hf, f) > 0 for nonzero $f \in \mathcal{D}(H)$.

2.2. THE LAX-PHILLIPS SCATTERING MATRIX AND ITS ANALYTICAL CONTINUATION

By Theorem 2.1, the unitary group W(t) can be investigated by the Lax-Phillips scattering methods if and only if H is an extension of a symmetric operator B^2 acting in a subspace \mathfrak{H}_0 of \mathfrak{H} . A simple maximal symmetric operator B in Theorem 2.1 turns out to be a useful technical tool allowing one to exhibit principal parts of the Lax-Phillips theory in a simple form. In particular, the subspaces D_{\pm} coincide with the closure³⁾ of the sets:

$$\left\{ \begin{bmatrix} u \\ iBu \end{bmatrix} \mid \forall u \in \mathcal{D}(B^2) \right\} \quad \text{and} \quad \left\{ \begin{bmatrix} u \\ -iBu \end{bmatrix} \mid \forall u \in \mathcal{D}(B^2) \right\}, \tag{2.6}$$

respectively. Moreover, for all $t \geq 0$,

$$W(t) \begin{bmatrix} u \\ iBu \end{bmatrix} = \begin{bmatrix} V(t)u \\ iBV(t)u \end{bmatrix}, \quad W(-t) \begin{bmatrix} u \\ -iBu \end{bmatrix} = \begin{bmatrix} V(t)u \\ -iBV(t)u \end{bmatrix}, \quad (2.7)$$

where $V(t) = e^{iBt}$ is a semigroup of isometric operators in \mathfrak{H}_0 .

The formulas (2.1), (2.6), and (2.7) allow one to construct the incoming/outgoing spectral representations for the restrictions of W(t) onto M_{\pm} in an explicit form [14, Section 2.1]. The latter leads to a simple method for the calculation of the Lax–Philips scattering matrix $S(\cdot)$ [12,18]. Actually, we need only a positive boundary triplet⁴ $(\mathcal{H}, \Gamma_0, \Gamma_1)$ of B^{*2} defined as follows: denote $\mathcal{H} = \ker(B^{*2} + I)$, then $\mathcal{D}(B^{*2}) = \mathcal{D}(B^*B) \dot{+} \mathcal{H}$ and each vector $f \in \mathcal{D}(B^{*2})$ can be decomposed:

$$f = u + h, \quad u \in \mathcal{D}(B^*B), \quad h \in \mathcal{H}.$$
 (2.8)

The formula (2.8) allows to define the linear mappings $\Gamma_i : \mathcal{D}(B^{*2}) \to \mathcal{H}$

$$\Gamma_0 f = \Gamma_0(u+h) = h, \quad \Gamma_1 f = \Gamma_1(u+h) = P_{\mathcal{H}}(B^*B+I)u,$$
 (2.9)

where $P_{\mathcal{H}}$ is the orthogonal projector of \mathfrak{H}_0 onto the subspace \mathcal{H} .

Theorem 2.2 ([12,18]). If conditions of Theorem 2.1 hold, then the Lax-Phillips scattering matrix $S(\cdot)$ for the unitary group W(t) of Cauchy problem solutions of (2.2) has the following analytical continuation into \mathbb{C}_- :

$$S(z) = [I - 2(1+iz)C(z)][I - 2(1-iz)C(z)]^{-1}, \quad z \in \mathbb{C}_{-},$$
 (2.10)

where the operators $C(z): \mathcal{H} \to \mathcal{H}$ are determined by the relation

$$C(z)\Gamma_1 u = \Gamma_0 u, \quad u \in P_{\mathfrak{H}_0}(H - z^2 I)^{-1} \ker(B^* + \overline{z}I), \quad z \in \mathbb{C}_-.$$
 (2.11)

An investigation of C(z) carried out in [18] shows that the values of S(z) are contraction operators in \mathcal{H} and $S^*(z) = S(-\overline{z})$.

³⁾ In the space \mathfrak{W} .

⁴⁾ See [15, Chap. 3] for definition of boundary triplets and positive boundary triplets.

In what follows, the analytical continuation (2.10) of the Lax-Phillips scattering matrix will be called the S-matrix of the positive self-adjoint operator H in (2.2). For this reason it is natural to ask: To what extend the S-matrix determines H?

We recall that a self-adjoint operator H is called *minimal* if each subspace of $\mathfrak{H} \ominus \mathfrak{H}_0$ that reduces H is trivial. Minimal self-adjoint extensions H_1 and H_2 of B^2 are called *unitary equivalent* if there exists an unitary operator Z in \mathfrak{H} such that $ZH_1 = H_2Z$ and Zf = f for all $f \in \mathfrak{H}_0$.

It follows from [18] that the S-matrix determines a minimal positive self-adjoint extension H of B^2 up to unitary equivalence.

Remark 2.3. Various approaches in non-stationary scattering theory are based on the comparing of two evolutions: "unperturbed" and "perturbed". The subspaces D_{\pm} characterize unperturbed evolution in the Lax-Phillips approach. Due to (2.6), the subspaces D_{\pm} are described by the operator B. The operator B^*B is a positive self-adjoint extension of B^2 in the space \mathfrak{H}_0 and the group $W_0(t)$ of solutions of the Cauchy problem of (2.2) (with B^*B instead of H) determines an unperturbed evolution. The corresponding wave operators $\Omega_{\pm} = s - \lim_{t \to \pm \infty} W(-t)W_0(t)$ exist and are isometric in \mathfrak{H}_0 . The scattering operator $\Omega_+^*\Omega_-$ coincides with the Lax-Phillips scattering matrix $S(\delta)$ in the spectral representation of the unperturbed evolution $W_0(t)$ [18].

3. PROPERTIES OF OPERATORS \mathbf{H}_{aq}

3.1. PRELIMINARIES

For technical reasons it is convenient to calculate the S-matrix for unitary equivalent copy of the operator H_{aq} in the Hilbert space $L_2(\mathbb{R}_+, \mathbb{C}^2)$. To do that, for each function $f \in L_2(\mathbb{R})$, we define the operator⁵⁾

$$Yf = \begin{bmatrix} f(x) \\ f(-x) \end{bmatrix} = \mathbf{f}(x), \quad x > 0$$

that maps isometrically $L_2(\mathbb{R})$ onto $L_2(\mathbb{R}_+, \mathbb{C}^2)$ and maps $W_2^2(\mathbb{R} \setminus \{0\})$ onto $W_2^2(\mathbb{R}_+, \mathbb{C}^2)$. For all $\mathbf{f} = Yf$, $f \in W_2^2(\mathbb{R} \setminus \{0\})$ we denote $[\mathbf{f}]_r = f_r(0)$ and $[\mathbf{f}]_s = f_s(0)$. In other words,

$$[\mathbf{f}]_r = \frac{1}{2} \lim_{x \to +0} (f_1(x) + f_2(x)), \quad [\mathbf{f}]_s = \lim_{x \to +0} (f_1(x) - f_2(x)), \quad \mathbf{f} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}.$$
 (3.1)

It is easy to see that $YH_{aq} = \mathbf{H}_{aq}Y$, where H_{aq} is defined by (1.2), (1.3) and the operator

$$\mathbf{H}_{a\mathbf{q}}\mathbf{f} = -\frac{d^2\mathbf{f}}{dx^2} + [\mathbf{f}]_r \mathbf{q}(x), \quad \mathbf{q} = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = Yq$$
 (3.2)

We will use the mathbf font for \mathbb{C}^2 -valued functions of $L_2(\mathbb{R}_+, \mathbb{C}^2)$ in order to avoid confusion with functions from $L_2(\mathbb{R})$. In particular, $\mathbf{e}^{-i\mu x} \equiv \begin{bmatrix} e^{-i\mu x} \\ e^{-i\mu x} \end{bmatrix}$.

acts in $L_2(\mathbb{R}_+, \mathbb{C}^2)$ with domain of definition

$$\mathcal{D}(\mathbf{H}_{a\mathbf{q}}) = \{ \mathbf{f} \in W_2^2(\mathbb{R}_+, \mathbb{C}^2) : [\mathbf{f}]_s = 0, \quad [\mathbf{f}']_r = a[\mathbf{f}]_r + (\mathbf{f}, \mathbf{q})_+ \}, \tag{3.3}$$

where $(\mathbf{f}, \mathbf{q})_+ = (Yf, Yq)_+ = (f, q)$ is the scalar product in $L_2(\mathbb{R}_+, \mathbb{C}^2)$.

When $a \to \infty$, the formulas (3.2) and (3.3) determine a positive self-adjoint operator in $L_2(\mathbb{R}_+, \mathbb{C}^2)$

$$\mathbf{H}_{\infty} \equiv \mathbf{H}_{\infty \mathbf{q}} = -\frac{d^2}{dx^2}, \quad \mathcal{D}(\mathbf{H}_{\infty}) = \{ \mathbf{f} \in W_2^2(\mathbb{R}_+, \mathbb{C}^2) : \mathbf{f}(0) = 0 \}$$

that does not depend on the choice of \mathbf{q} and can be decomposed

$$\mathbf{H}_{\infty}\mathbf{f} = \left[\begin{array}{c} H_{\infty}f_1 \\ H_{\infty}f_2 \end{array} \right], \quad H_{\infty} = -\frac{d^2}{dx^2}, \quad \mathcal{D}(H_{\infty}) = \{f \in W_2^2(\mathbb{R}_+): \ f(0) = 0\}.$$

By analogy with [21, Section 5] (where the case of operators H_{aq} has been studied) we consider \mathbf{H}_{aq} and \mathbf{H}_{∞} as restrictions of the maximal operator

$$\mathbf{H}_{max}\mathbf{f} = -\frac{d^2\mathbf{f}}{dx^2} + [\mathbf{f}]_r\mathbf{q}(x), \quad \mathcal{D}(\mathbf{H}_{max}) = \{\mathbf{f} \in W_2^2(\mathbb{R}_+, \mathbb{C}^2) : [\mathbf{f}]_s = 0\}$$

onto the corresponding domain of definition.

The maximal operator \mathbf{H}_{max} has a boundary triplet $(\mathbb{C}, \Gamma_0, \Gamma_1)$, where

$$\Gamma_0 \mathbf{f} = [\mathbf{f}]_r, \quad \Gamma_1 \mathbf{f} = 2[\mathbf{f}']_r - (\mathbf{f}, \mathbf{q})_+, \quad \mathbf{f} \in \mathcal{D}(\mathbf{H}_{max})$$
 (3.4)

and the formulas (3.2) and (3.3) are rewritten:

$$\mathbf{H}_{a\mathbf{q}} = \mathbf{H}_{max} \upharpoonright_{\mathcal{D}(\mathbf{H}_{a\mathbf{q}})}, \quad \mathcal{D}(\mathbf{H}_{a\mathbf{q}}) = \{ \mathbf{f} \in \mathcal{D}(\mathbf{H}_{max}) : a\Gamma_0 \mathbf{f} = \Gamma_1 \mathbf{f} \}.$$
 (3.5)

In particular, \mathbf{H}_{∞} is the restriction of \mathbf{H}_{max} onto ker Γ_0 and its resolvent is

$$(\mathbf{H}_{\infty} - z^2 I)^{-1} \mathbf{f} = \frac{i}{2z} [\mathbf{A}_z(x) e^{-izx} + \mathbf{B}_z(x) e^{izx}], \quad \mathbf{f} \in L_2(\mathbb{R}_+, \mathbb{C}^2),$$
(3.6)

where $z \in \mathbb{C}_{-}$ and

$$\mathbf{A}_{z}(x) = \int_{0}^{\infty} e^{-izs} \mathbf{f}(s) ds - \int_{0}^{x} e^{izs} \mathbf{f}(s) ds, \quad \mathbf{B}_{z}(x) = -\int_{x}^{\infty} e^{-izs} \mathbf{f}(s) ds.$$

Lemma 3.1. The Krein-Naimark resolvent formula

$$(\mathbf{H}_{a\mathbf{q}} - z^2 I)^{-1} \mathbf{f} = (\mathbf{H}_{\infty} - z^2 I)^{-1} \mathbf{f} + \frac{(\mathbf{f}, \mathbf{u}_{-\overline{z}})_{+}}{a - W(z^2)} \mathbf{u}_z(x)$$
(3.7)

holds for $a \neq W(z^2)$. Here,

$$\mathbf{u}_{\mu}(x) = \mathbf{e}^{-i\mu x} - (\mathbf{H}_{\infty} - \mu^2 I)^{-1} \mathbf{q}, \quad \mu \in \{z, -\overline{z}\} \subset \mathbb{C}_{-}$$
 (3.8)

is an eigenfunction of \mathbf{H}_{max} corresponding to the eigenvalue μ^2 and

$$W(z^{2}) = -2iz - 2(\mathbf{e}^{-izx}, Re\ \mathbf{q})_{+} + ((\mathbf{H}_{\infty} - z^{2}I)^{-1}\mathbf{q}, \mathbf{q})_{+}, \quad z \in \mathbb{C}_{-}.$$
(3.9)

Proof. It follows from [21] that the subspace $\ker(\mathbf{H}_{max} - \mu^2 I)$ is one dimensional and it is generated by the function \mathbf{u}_{μ} defined by (3.8). Setting $\mu = z$ and using (3.4), we conclude that $\Gamma_0 \mathbf{u}_z = 1$ and the Weyl–Titchmarsh function associated to the boundary triplet $(\mathbb{C}, \Gamma_0, \Gamma_1)$ takes the form

$$W(z^2) = \Gamma_1 \mathbf{u}_z = -2iz - 2[\mathbf{v}']_r - (\mathbf{e}^{-izx} + \mathbf{v}, \mathbf{q})_+,$$

where $\mathbf{v} = (\mathbf{H}_{\infty} - z^2 I)^{-1} \mathbf{q}$. In view of (3.6), $\mathbf{v}'(0) = \int_0^{\infty} e^{-izs} \mathbf{q}(s) ds$ and hence,

$$2[\mathbf{v}']_r + (\mathbf{e}^{-izx}, \mathbf{q})_+ = 2(\mathbf{e}^{-izx}, Re \ \mathbf{q})_+, \quad Re \ \mathbf{q} = \begin{bmatrix} Re \ q_1 \\ Re \ q_2 \end{bmatrix}.$$

Substituting this expression into the formula for $W(z^2)$ we obtain (3.9).

In terms of the boundary triplet $(\mathbb{C}, \Gamma_0, \Gamma_1)$, the Krein–Naimark resolvent formula has the form [26, Theorem 14.18, Proposition 14.14]

$$(\mathbf{H}_{a\mathbf{q}} - z^2 I)^{-1} \mathbf{f} = (\mathbf{H}_{\infty} - z^2 I)^{-1} \mathbf{f} + \frac{\Gamma_1 \mathbf{u}}{a - W(z^2)} \mathbf{u}_z(x),$$

where $\mathbf{u} = (\mathbf{H}_{\infty} - z^2 I)^{-1} \mathbf{f}$. In view of (3.6), $\mathbf{u}'(0) = \int_0^{\infty} e^{-izs} \mathbf{f}(s) ds$. Taking (3.1) into account,

$$2[\mathbf{u}']_r = \int_0^\infty e^{-izs} (f_1(s) + f_2(s)) dx = (\mathbf{f}, \mathbf{e}^{i\overline{z}x})_+.$$

Finally, using (3.4) and (3.8) with $\mu = -\overline{z}$, we obtain

$$\Gamma_1\mathbf{u}=(\mathbf{f},\mathbf{e}^{i\overline{z}x})_+-(\mathbf{u},\mathbf{q})_+=(\mathbf{f},\mathbf{e}^{i\overline{z}x}-(\mathbf{H}_\infty-\overline{z}^2I)^{-1}\mathbf{q})_+=(\mathbf{f},\mathbf{u}_{-\overline{z}})_+$$

that completes the proof.

3.2. APPLICABILITY OF THE LAX-PHILLIPS APPROACH FOR $\mathbf{H}_{a\mathbf{q}}$

Denote by

$$\mathcal{B} = i \frac{d}{dx}, \quad \mathcal{D}(\mathcal{B}) = \{ u \in W_2^1(\mathbb{R}_+) : u(0) = 0 \}$$
 (3.10)

the first derivative operator in $L_2(\mathbb{R}_+)$. The same notation will be used for its analog acting in $L_2(\mathbb{R}_+, \mathbb{C}^2)$. The both operators are simple maximal symmetric with zero defect numbers in \mathbb{C}_+ , and theirs Cayley transforms

$$T = (\mathcal{B} - iI)(\mathcal{B} + iI)^{-1} \tag{3.11}$$

are forward shift operators in the corresponding spaces.

A function $\mathbf{q} \in L_2(\mathbb{R}_+, \mathbb{C}^2)$ is called *non-cyclic* for the backward shift operator T^* if the subspace

$$E_{\mathbf{q}} = \bigvee_{n=0}^{\infty} T^{*n} \mathbf{q}$$

does not coincide with $L_2(\mathbb{R}_+, \mathbb{C}^2)$.

Considering $L_2(\mathbb{R}_+)$ as a subspace of $L_2(\mathbb{R})$ we conclude that the Fourier transform

$$Ff(\delta) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\delta s} f(s) ds$$

maps isometrically $L_2(\mathbb{R}_+)$ onto the Hardy space $H^2(\mathbb{C}_+)$ and

$$F\mathcal{B}u = \delta Fu, \quad FTf = \frac{\delta - i}{\delta + i}Ff, \quad u \in \mathcal{D}(\mathcal{B}), f \in L_2(\mathbb{R}_+).$$

Let $\psi \in H^{\infty}(\mathbb{C}_+)$ be an inner function. Then

$$\psi(\mathcal{B}) = F^{-1}\psi(\delta)F\tag{3.12}$$

is an isometric operator in $L_2(\mathbb{R}_+)$ which commutes with \mathcal{B} [14, Section 5].

Lemma 3.2. The following are equivalent:

- (i) a function $\mathbf{q} = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$ is non-cyclic for the backward shift operator T^* ,
- (ii) there exists an inner function $\psi \in H^{\infty}(\mathbb{C}_{+})$ such that the subspace $\mathfrak{H}_{0} = \psi(\mathcal{B})L_{2}(\mathbb{R}_{+})$ of $L_{2}(\mathbb{R}_{+})$ is orthogonal to at least one of the functions q_{i} .

Proof. (i) \Rightarrow (ii) Since $E_{\mathbf{q}} = E_{q_1} \oplus E_{q_2}$, the function \mathbf{q} is non-cyclic if and only if at least one of the functions $q_i \in L_2(\mathbb{R}_+)$ is non-cyclic for the backward shift operator T^* in $L_2(\mathbb{R}_+)$. Let $q \equiv q_i$ be non-cyclic. Then the non-zero subspace

$$\mathfrak{H}_0 = L_2(\mathbb{R}_+) \ominus E_q$$

is invariant with respect to T. This means that $F\mathfrak{H}_0$ is invariant with respect to the multiplication by $\frac{\delta-i}{\delta+i}$ in $H^2(\mathbb{C}_+)$. The Beurling theorem [22, p. 164] yields the existence of an inner function $\psi \in H^{\infty}(\mathbb{C}_+)$ such that $F\mathfrak{H}_0 = \psi(\delta)H_2(\mathbb{C}_+)$. Therefore

$$\mathfrak{H}_0 = F^{-1}\psi(\delta)FL_2(\mathbb{R}_+) = \psi(\mathcal{B})L_2(\mathbb{R}_+).$$

By the construction, \mathfrak{H}_0 is orthogonal to q (since, q belongs to E_q).

(ii)
$$\Rightarrow$$
(i) Let $\mathfrak{H}_0 = \psi(\mathcal{B})L_2(\mathbb{R}_+)$ be orthogonal to q . Then⁶)

$$(\psi(\mathcal{B})f, T^{*n}q)_+ = (T^n\psi(\mathcal{B})f, q)_+ = (\psi(\mathcal{B})T^nf, q)_+ = 0 \quad \text{for all} \quad f \in L_2(\mathbb{R}_+).$$

Therefore, $T^{*n}q$ is orthogonal to \mathfrak{H}_0 . This means that E_q is orthogonal to \mathfrak{H}_0 . Therefore, E_q is a proper subspace of $L_2(\mathbb{R}_+)$ and q is non-cyclic.

Theorem 3.3. If \mathbf{q} is non-cyclic for T^* , then there exists a simple maximal symmetric operator B acting in a subspace \mathfrak{H}_0 of $L_2(\mathbb{R}_+, \mathbb{C}^2)$ such that the operators $\mathbf{H}_{a\mathbf{q}}$ are extensions of the symmetric operator B^2 for all $a \in \mathbb{C}$.

⁶⁾ Here, $(\cdot,\cdot)_+$ is the scalar product in $L_2(\mathbb{R}_+)$.

Proof. If **q** is non-cyclic, then at least one of q_i is non-cyclic. Consider firstly the case where the both of functions q_i are non-cyclic. Due to the proof of Lemma 3.2, for each q_i there exists an inner function ψ_i such that the subspace $\psi_i(\mathcal{B})L_2(\mathbb{R}_+)$ is orthogonal to q_i . Denote

$$\mathfrak{H}_0 = \begin{bmatrix} \psi_1(\mathcal{B}) L_2(\mathbb{R}_+) \\ \psi_2(\mathcal{B}) L_2(\mathbb{R}_+) \end{bmatrix} = \psi(\mathcal{B}) L_2(\mathbb{R}_+, \mathbb{C}^2), \tag{3.13}$$

where

$$\psi(\mathcal{B}) = \begin{bmatrix} \psi_1(\mathcal{B}) & 0\\ 0 & \psi_2(\mathcal{B}) \end{bmatrix}$$
 (3.14)

is an isometric operator in $L_2(\mathbb{R}_+, \mathbb{C}^2)$ that commutes with \mathcal{B} . This allows to define a simple maximal symmetric operator in \mathfrak{H}_0 :

$$B = \psi(\mathcal{B})\mathcal{B}\psi(\mathcal{B})^*, \quad \mathcal{D}(B) = \psi(\mathcal{B})\mathcal{D}(\mathcal{B}). \tag{3.15}$$

Since $\psi(\mathcal{B})$ commutes with \mathcal{B} , the formula (3.15) can be rewritten as

$$B\mathbf{u} = \mathcal{B}\mathbf{u}, \quad \mathbf{u} \in \mathcal{D}(B) = \psi(\mathcal{B})\mathcal{D}(\mathcal{B}) = \mathcal{D}(\mathcal{B}) \cap \mathfrak{H}_0.$$
 (3.16)

(i.e., B is a part of \mathcal{B} restricted on \mathfrak{H}_0). In view of (3.10) and (3.16)

$$B^{2} = -\frac{d^{2}}{dx^{2}}, \quad \mathcal{D}(B^{2}) = \{\mathbf{u} \in W_{2}^{2}(\mathbb{R}_{+}, \mathbb{C}^{2}) \cap \mathfrak{H}_{0} : \mathbf{u}(0) = \mathbf{u}'(0) = 0\}.$$
 (3.17)

By Lemma 3.2 and (3.13), the subspace \mathfrak{H}_0 is orthogonal to \mathbf{q} . Hence, in view of (3.2), (3.3), and (3.17), $\mathcal{D}(\mathbf{H}_{a\mathbf{q}}) \supset \mathcal{D}(B^2)$ and

$$\mathbf{H}_{a\mathbf{q}}\mathbf{u} = -\frac{d^2\mathbf{u}}{dx^2} = B^2\mathbf{u}$$
 for all $\mathbf{u} \in \mathcal{D}(B^2)$.

The case where only one q_i is non-cyclic is considered similarly. For example, if q_1 is non-cyclic whereas q_2 is cyclic (i.e., $E_{q_2} = L_2(\mathbb{R}_+)$), then \mathfrak{H}_0 and $\psi(\mathcal{B})$ are determined as above with $\psi_2 = 0$.

Corollary 3.4. Assume that $H = \mathbf{H}_{a\mathbf{q}}$ is a positive self-adjoint operator. If \mathbf{q} is non-cyclic for T^* , then the group W(t) of Cauchy problem solutions of (2.2) has incoming/outgoing subspaces D_{\pm} defined by (2.6), where B is from (3.16).

Proof. It follows from Theorems 2.1 and 3.3.
$$\Box$$

4. S-MATRIX FOR POSITIVE SELF-ADJOINT OPERATOR

In this section we suppose that $\mathbf{H}_{a\mathbf{q}}$ is a positive self-adjoint operator and the function \mathbf{q} is non-cyclic. By Theorem 3.3, $\mathbf{H}_{a\mathbf{q}}$ is an extension of the symmetric operator B^2 defined by (3.17) that acts in the subspace $\mathfrak{H}_0 = \psi(\mathcal{B})L_2(\mathbb{R}_+, \mathbb{C}^2)$. In view of Corollary 3.4 and Theorem 2.2, the S-matrix of $\mathbf{H}_{a\mathbf{q}}$ exists and is given by (2.10). Our goal is to modify this general formula taking into account the specific choice of B in (3.16).

4.1. PRELIMINARIES

The following technical results are needed for the calculation of S-matrix.

Lemma 4.1. Let an isometric operator $\psi(\mathcal{B})$ be defined by (3.12). Then

$$\psi(\mathcal{B})^* e^{-i\mu x} = \overline{\psi(\overline{\mu})} e^{-i\mu x}, \quad \mu \in \mathbb{C}_-.$$

Proof. It follows from (3.10) that $\mathcal{B}^* = i \frac{d}{dx}$, $\mathcal{D}(\mathcal{B}^*) = W_2^1(\mathbb{R}_+)$. Therefore,

$$\ker(\mathcal{B}^* - \mu I) = \{ce^{-i\mu x} : c \in \mathbb{C}\}.$$

This means that, for all $u \in \mathcal{D}(\mathcal{B})$,

$$((\mathcal{B} - \overline{\mu}I)u, \psi(\mathcal{B})^* e^{-i\mu x})_+ = (\psi(\mathcal{B})(\mathcal{B} - \overline{\mu}I)u, e^{-i\mu x})_+ = ((\mathcal{B} - \overline{\mu}I)\psi(\mathcal{B})u, e^{-i\mu x})_+ = 0.$$

Hence $\psi(\mathcal{B})^*e^{-i\mu x}$ belongs to $\ker(\mathcal{B}^* - \mu I)$ and

$$(\psi(\mathcal{B})^* e^{-i\mu x}, e^{-i\mu x})_+ = c(e^{-i\mu x}, e^{-i\mu x})_+ = -\frac{c}{2Im \ \mu}.$$
 (4.1)

Using (3.12) and taking into account that $F\chi_{\mathbb{R}_+}(x)e^{-i\mu x} = \frac{i}{\sqrt{2\pi}} \cdot \frac{1}{\delta-\mu}$, we verify that the inner product

$$(\psi(\mathcal{B})^* e^{-i\mu x}, e^{-i\mu x})_+ = (e^{-i\mu x}, \psi(\mathcal{B}) e^{-i\mu x})_+ = (F\chi_{\mathbb{R}_+}(x) e^{-i\mu x}, \psi(\delta) F\chi_{\mathbb{R}_+}(x) e^{-i\mu x})$$

is equal to $\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\overline{\psi(\delta)}}{(Re \ \mu - \delta)^2 + (Im \ \mu)^2} d\delta$. The Poisson formula [24, p.147] and (4.1) lead to the conclusion that

$$c = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{-(Im \ \mu)\overline{\psi(\delta)}}{(Re \ \mu - \delta)^2 + (Im \ \mu)^2} d\delta = \overline{\psi(Re \ \mu - iIm \ \mu)} = \overline{\psi(\overline{\mu})}$$

that completes the proof.

Lemma 4.2. Let B and $\psi(\mathcal{B})$ be defined by (3.15) and (3.14), respectively. Then, for any $\mu \in \mathbb{C}_{-}$,

$$\ker(B^{*2} - \mu^2 I) = \ker(B^* - \mu I) = \psi(\mathcal{B}) \left\{ \mathbf{h}_{\mu} = \begin{bmatrix} \alpha_{\mu} \\ \beta_{\mu} \end{bmatrix} e^{-i\mu x} : \alpha_{\mu}, \beta_{\mu} \in \mathbb{C} \right\}.$$

Proof. The first identity follows from (2.5). It follows from (3.15) that

$$B^* = \psi(\mathcal{B})\mathcal{B}^*\psi(\mathcal{B})^*, \quad \mathcal{D}(B^*) = \psi(\mathcal{B})\mathcal{D}(\mathcal{B}^*) = \psi(\mathcal{B})W_2^1(\mathbb{R}_+, \mathbb{C}^2). \tag{4.2}$$

By virtue of (4.2) we conclude that $\ker(B^* - \mu I) = \psi(\mathcal{B}) \ker(\mathcal{B}^* - \mu I)$. It follows from the proof of Lemma 4.1 that $\ker(\mathcal{B}^* - \mu I)$ coincides with the set of vectors $\{\mathbf{h}_{\mu}\}$ defined above.

Corollary 4.3. Let $\psi(\mathcal{B})$ be defined by (3.14). Then, for any $\mu \in \mathbb{C}_{-}$,

$$\psi(\mathcal{B})^* \mathbf{e}^{-i\mu x} = \overline{\left[\begin{array}{c} \psi_1(\overline{\mu}) \\ \psi_2(\overline{\mu}) \end{array}\right]} e^{-i\mu x}, \quad \psi(\mathcal{B})^* \mathbf{u}_{\mu} = \left[\begin{array}{c} c(\mu, q_1) \\ c(\mu, q_2) \end{array}\right] e^{-i\mu x}, \tag{4.3}$$

where \mathbf{u}_{μ} is defined by (3.8) and

$$c(\mu, q_j) = \overline{\psi_j(\overline{\mu})} + 2(Im \ \mu)((H_{\infty} - \mu^2 I)^{-1}q_j, \psi_j(\mathcal{B})e^{-i\mu x})_+. \tag{4.4}$$

Proof. The first relation in (4.3) follows from Lemma 4.1.

The function \mathbf{u}_{μ} in the second relation is an eigenfunction of the operator \mathbf{H}_{max} (see Lemma 3.1). Since $(\mathbb{C}, \Gamma_0, \Gamma_1)$ defined by (3.4) is a boundary triplet of \mathbf{H}_{max} , its adjoint \mathbf{H}_{max}^* coincides with the symmetric operator $\mathbf{H}_{min} = \mathbf{H}_{max} \upharpoonright_{\ker \Gamma_0 \cap \ker \Gamma_1}$. Precisely,

$$\mathbf{H}_{min} = -\frac{d^2}{dx^2}, \quad \mathcal{D}(\mathbf{H}_{min}) = \{ \mathbf{f} \in W_2^2(\mathbb{R}_+, \mathbb{C}^2) : [\mathbf{f}]_r = 0, \ 2[\mathbf{f}']_r = (\mathbf{f}, \mathbf{q})_+ \}.$$

Comparing this formula with (3.17) leads to the conclusion that $\mathbf{H}_{min} \supset B^2$, i.e., \mathbf{H}_{min} is an extension of B^2 with the exit into the space $L_2(\mathbb{R}_+, \mathbb{C}^2)$. Then, for $\mathbf{f} \in \mathcal{D}(\mathbf{H}_{max})$ and $\mathbf{u} \in \mathcal{D}(B^2)$,

$$(P_{\mathfrak{H}_0}\mathbf{H}_{max}\mathbf{f},\mathbf{u})_+ = (\mathbf{H}_{max}\mathbf{f},\mathbf{u})_+ = (\mathbf{f},\mathbf{H}_{min}\mathbf{u})_+ = (P_{\mathfrak{H}_0}\mathbf{f},B^2\mathbf{u})_+ = (B^{*2}P_{\mathfrak{H}_0}\mathbf{f},\mathbf{u})_+,$$

where $P_{\mathfrak{H}_0}$ is the orthogonal projection in $L_2(\mathbb{R}_+, \mathbb{C}^2)$ on the subspace \mathfrak{H}_0 defined by (3.13). The obtained relation means that

$$P_{\mathfrak{H}_0}\mathbf{H}_{max}\mathbf{f} = B^{*2}P_{\mathfrak{H}_0}\mathbf{f}, \text{ for all } \mathbf{f} \in \mathcal{D}(\mathbf{H}_{max}) = W_2^2(\mathbb{R}_+, \mathbb{C}^2).$$
 (4.5)

Setting $\mathbf{f} = \mathbf{u}_{\mu}$ in (4.5) and taking into account that $\mathbf{H}_{max}\mathbf{u}_{\mu} = \mu^2\mathbf{u}_{\mu}$, we obtain $P_{\mathfrak{H}_0}\mathbf{H}_{max}\mathbf{u}_{\mu} = B^{*2}P_{\mathfrak{H}_0}\mathbf{u}_{\mu} = \mu^2P_{\mathfrak{H}_0}\mathbf{u}_{\mu}$. This relation and (2.5) mean

$$P_{\mathfrak{H}_0}\mathbf{u}_{\mu} \in \ker(B^{*2} - \mu^2 I) = \ker(B^* - \mu I).$$

In view of Lemma 4.2, $P_{\mathfrak{H}_0}\mathbf{u}_{\mu} = \psi(\mathcal{B})\mathbf{h}_{\mu}$ for some choice of $\mathbf{h}_{\mu} = \begin{bmatrix} \alpha_{\mu} \\ \beta_{\mu} \end{bmatrix} e^{-i\mu x}$ or $\psi(\mathcal{B})\psi(\mathcal{B})^*\mathbf{u}_{\mu} = \psi(\mathcal{B})\mathbf{h}_{\mu}$ since $P_{\mathfrak{H}_0} = \psi(\mathcal{B})\psi(\mathcal{B})^*$. Therefore $\psi(\mathcal{B})^*\mathbf{u}_{\mu} = \mathbf{h}_{\mu}$ that leads to the second relation in (4.3) with unspecified parameters α_{μ} , β_{μ} . Taking (3.8) into account and arguing by the analogy with the determination of c in the proof of Lemma 4.1 we arrive at the conclusion that $\alpha_{\mu} = c(\mu, q_1)$ and $\beta_{\mu} = c(\mu, q_2)$, where $c(\mu, q_i)$ are defined in (4.4).

4.2. POSITIVE BOUNDARY TRIPLET

In view of Section 2.2, the S-matrix can not be constructed without finding the positive boundary triplet $(\mathcal{H}, \Gamma_0, \Gamma_1)$ of B^{*2} . Since B is the restriction of the first derivative operator \mathcal{B} on \mathfrak{H}_0 , see (3.16), one can try to express $(\mathcal{H}, \Gamma_0, \Gamma_1)$ in terms of well-known positive boundary triplet $(\mathcal{H}', \Gamma'_0, \Gamma'_1)$ of \mathcal{B}^{*2} .

Lemma 4.4. The following relations hold:

$$\mathcal{H} = \psi(\mathcal{B})\mathcal{H}', \quad \Gamma_0\psi(\mathcal{B}) = \psi(\mathcal{B})\Gamma_0', \quad \Gamma_1\psi(\mathcal{B}) = \psi(\mathcal{B})\Gamma_1'.$$

Proof. It follows from (4.2) that

$$B^{*2} = \psi(\mathcal{B})\mathcal{B}^{*2}\psi(\mathcal{B})^*, \quad \mathcal{D}(B^{*2}) = \psi(\mathcal{B})\mathcal{D}(\mathcal{B}^{*2}) = \psi(\mathcal{B})W_2^2(\mathbb{R}_+, \mathbb{C}^2). \tag{4.6}$$

By definition $\mathcal{H} = \ker(B^{*2} + I)$ and $\mathcal{H}' = \ker(B^{*2} + I)$. Using (4.6), we obtain

$$\mathcal{H} = \ker(B^{*2} + I) = \psi(\mathcal{B}) \ker(\mathcal{B}^{*2} + I) = \psi(\mathcal{B})\mathcal{H}'.$$

It follows from (3.15) and (4.2) that

$$B^*B = \psi(\mathcal{B})\mathcal{B}^*\mathcal{B}\psi(\mathcal{B})^*, \quad \mathcal{D}(B^*B) = \psi(\mathcal{B})\mathcal{D}(\mathcal{B}^*\mathcal{B}). \tag{4.7}$$

For brevity, we denote $V = \psi(\mathcal{B})$ and consider $\mathbf{f} \in \mathcal{D}(\mathcal{B}^{*2})$. Then $\mathbf{f} = \mathbf{u} + \mathbf{h}$, where $\mathbf{u} \in \mathcal{D}(\mathcal{B}^{*B})$ and $\mathbf{h} \in \mathcal{H}'$. By virtue of (4.6), (4.7), $V\mathbf{f} \in \mathcal{D}(\mathcal{B}^{*2})$ and $V\mathbf{f} = V\mathbf{u} + V\mathbf{h}$, where $V\mathbf{u} \in \mathcal{D}(\mathcal{B}^{*B})$ and $V\mathbf{h} \in \mathcal{H}$. In view of (2.9), $\Gamma_0 V\mathbf{f} = V\mathbf{h} = V\Gamma_0'\mathbf{f}$.

Since $\mathcal{H} = V\mathcal{H}'$ and $\mathcal{R}(B^2 + I) = V\mathcal{R}(\mathcal{B}^2 + I)$, the orthogonal projectors $P_{\mathcal{H}}$ and $P_{\mathcal{H}'}$ are related as follows: $VP_{\mathcal{H}'} = P_{\mathcal{H}}V$. Therefore,

$$\Gamma_1 V \mathbf{f} = P_{\mathcal{H}}(B^*B + I) V \mathbf{u} = P_{\mathcal{H}}(V \mathcal{B}^* \mathcal{B} V^* + I) V \mathbf{u} = P_{\mathcal{H}} V (\mathcal{B}^* \mathcal{B} + I) \mathbf{u} = V \Gamma_1' \mathbf{f}$$
that completes the proof.

Corollary 4.5. The positive boundary triplet $(\mathcal{H}, \Gamma_0, \Gamma_1)$ of B^{*2} consists of the space

$$\mathcal{H} = \psi(\mathcal{B}) \left\{ \left[\begin{array}{c} \alpha \\ \beta \end{array} \right] e^{-x} \ : \ \alpha, \beta \in \mathbb{C} \right\}$$

and the mappings $\Gamma_i : \psi(\mathcal{B})W_2^2(\mathbb{R}_+, \mathbb{C}^2) \to \mathcal{H}$ that are defined as follows:

$$\Gamma_0 \psi(\mathcal{B}) \mathbf{f}(x) = \psi(\mathcal{B}) \mathbf{f}(0) e^{-x}, \quad \Gamma_1 \psi(\mathcal{B}) \mathbf{f}(x) = 2\psi(\mathcal{B}) [\mathbf{f}'(0) + \mathbf{f}(0)] e^{-x}.$$

Proof. It is well known (see, e.g., [12]) that the positive boundary triplet $(\mathcal{H}', \Gamma'_0, \Gamma'_1)$ of \mathcal{B}^{*2} has the form: $\mathcal{H}' = \left\{ \begin{bmatrix} \alpha \\ \beta \end{bmatrix} e^{-x} : \alpha, \beta \in \mathbb{C} \right\}$ and

$$\Gamma_0' \mathbf{f} = \mathbf{f}(0)e^{-x}, \quad \Gamma_1 \mathbf{f} = 2[\mathbf{f}'(0) + \mathbf{f}(0)]e^{-x}, \quad \mathbf{f} \in W_2^2(\mathbb{R}_+, \mathbb{C}^2).$$

Applying Lemma 4.4 we complete the proof.

4.3. THE S-MATRIX FOR POSITIVE SELF-ADJOINT $\mathbf{H}_{a\mathbf{q}}$

Theorem 4.6. The S-matrix for positive self-adjoint operator $\mathbf{H}_{a\mathbf{q}}$ has the form

$$S(z) = \begin{bmatrix} \Psi_1(z) & 0 \\ 0 & \Psi_2(z) \end{bmatrix} - \frac{2zi}{a - W(z^2)} \begin{bmatrix} c(z, q_1)\overline{c(-\overline{z}, q_1)} & c(z, q_1)\overline{c(-\overline{z}, q_2)} \\ c(z, q_2)\overline{c(-\overline{z}, q_1)} & c(z, q_2)\overline{c(-\overline{z}, q_2)} \end{bmatrix},$$

$$(4.8)$$

where $c(\mu, q_i)$ are determined by (4.4) and $\Psi_j(z)$ are holomorphic continuations of the functions $\psi_j(-\delta)/\psi_j(\delta)$ ($\delta \in \mathbb{R}$) into \mathbb{C}_- such that $|\Psi_j(z)| < 1$ and $\overline{\Psi_j(z)} = \Psi_j(-\overline{z})$.

Proof. By Theorem 2.2, for the calculation of S-matrix, one need to find operators C(z) in (2.11). To do that we analyze vectors

$$\mathbf{u} \in P_{\mathfrak{H}_0} (\mathbf{H}_{a\mathbf{q}} - z^2 I)^{-1} \ker(B^* + \overline{z}I)$$

in more detail. First of all we note that $\ker(B^* + \overline{z}I) = \psi(\mathcal{B})\{\mathbf{h}_{-\overline{z}}\}\$ by Lemma 4.2. Consider the equation⁷⁾

$$(\mathbf{H}_{a\mathbf{q}} - z^2 I)\mathbf{f} = (\overline{z}^2 - z^2)\psi(\mathcal{B})\mathbf{h}_{-\overline{z}}, \quad z \in \mathbb{C}_- \setminus i\mathbb{R}_-.$$

$$(4.9)$$

Its solution $\mathbf{f} \in \mathcal{D}(\mathbf{H}_{a\mathbf{q}})$ is determined uniquely and

$$\mathbf{u} = P_{\mathfrak{H}_0} \mathbf{f} = (\overline{z}^2 - z^2) P_{\mathfrak{H}_0} (\mathbf{H}_{a\mathbf{q}} - z^2 I)^{-1} \psi(\mathcal{B}) \mathbf{h}_{-\overline{z}}$$
(4.10)

belongs to $\mathcal{D}(B^{*2})$ due to (4.5). In view of (4.6), $\mathbf{u} = \psi(\mathcal{B})\mathbf{v}$, where $\mathbf{v} \in W_2^2(\mathbb{R}_+, \mathbb{C}^2)$ and $B^{*2}\psi(\mathcal{B})\mathbf{v} = \psi(\mathcal{B})\mathcal{B}^{*2}\mathbf{v}$. Moreover, since $P_{\mathfrak{H}_0} = \psi(\mathcal{B})\psi(\mathcal{B})^*$, the relation (4.10) yields

$$\mathbf{v} = (\overline{z}^2 - z^2)\psi(\mathcal{B})^* (\mathbf{H}_{aq} - z^2 I)^{-1} \psi(\mathcal{B}) \mathbf{h}_{-\overline{z}}. \tag{4.11}$$

Applying $P_{\mathfrak{H}_0}$ to the both parts of (4.9) and using (4.5) we obtain

$$(B^{*2} - z^2 I)\mathbf{u} = \psi(\mathcal{B})(\mathcal{B}^{*2} - z^2 I)\mathbf{v} = (\overline{z}^2 - z^2)\psi(\mathcal{B})\mathbf{h}_{-\overline{z}}.$$

Therefore, $(\mathcal{B}^{*2} - z^2 I)\mathbf{v} = (-\frac{d^2}{dz^2} - z^2 I)\mathbf{v} = (\overline{z}^2 - z^2)\mathbf{h}_{-\overline{z}}$. This means that

$$\mathbf{v} = \mathbf{h}_{-\overline{z}} + \mathbf{h}_z, \quad \mathbf{u} = \psi(\mathcal{B})\mathbf{v} = \psi(\mathcal{B})\mathbf{h}_{-\overline{z}} + \psi(\mathcal{B})\mathbf{h}_z,$$
 (4.12)

where $\mathbf{h}_z \in \ker(B^* - zI)$ is determined uniquely by the choice of $\mathbf{h}_{-\overline{z}}$. Applying operators Γ_i from Corollary 4.5 we obtain

$$\Gamma_0 \mathbf{u} = \psi(\mathcal{B}) \begin{bmatrix} \alpha_{-\overline{z}} + \alpha_z \\ \beta_{-\overline{z}} + \beta_z \end{bmatrix} e^{-x}, \quad \Gamma_1 \mathbf{u} = 2\psi(\mathcal{B}) \begin{bmatrix} (1+i\overline{z})\alpha_{-\overline{z}} + (1-iz)\alpha_z \\ (1+i\overline{z})\beta_{-\overline{z}} + (1-iz)\beta_z \end{bmatrix} e^{-x}.$$

Since dim $\mathcal{H}=2$, the function C(z) in Theorem 2.2 is 2×2 -matrix-valued. The substitution of $\Gamma_i\mathbf{u}$ into the characteristic relation (2.11) gives

$$2C(z)\left[\begin{array}{c} (1+i\overline{z})\alpha_{-\overline{z}}+(1-iz)\alpha_z\\ (1+i\overline{z})\beta_{-\overline{z}}+(1-iz)\beta_z \end{array}\right]=\left[\begin{array}{c} \alpha_{-\overline{z}}+\alpha_z\\ \beta_{-\overline{z}}+\beta_z \end{array}\right]$$

and, after elementary transformations,

$$[I - 2(1 - iz)C(z)]^{-1} \begin{bmatrix} \alpha_{-\overline{z}} \\ \beta_{-\overline{z}} \end{bmatrix} = \frac{1}{2iRe\ z} \begin{bmatrix} (1 + i\overline{z})\alpha_{-\overline{z}} + (1 - iz)\alpha_z \\ (1 + i\overline{z})\beta_{-\overline{z}} + (1 - iz)\beta_z \end{bmatrix}. \tag{4.13}$$

The substitution of (4.13) into (2.10) gives the S-matrix

$$S(z) \begin{bmatrix} \alpha_{-\overline{z}} \\ \beta_{-\overline{z}} \end{bmatrix} = -i \frac{Im \ z}{Re \ z} \begin{bmatrix} \alpha_{-\overline{z}} \\ \beta_{-\overline{z}} \end{bmatrix} - \frac{z}{Re \ z} \begin{bmatrix} \alpha_z \\ \beta_z \end{bmatrix}, \quad z \in \mathbb{C}_- \setminus i\mathbb{R}_-. \tag{4.14}$$

⁷⁾ The coefficient $(\overline{z}^2 - z^2)$ is used for the simplification of formulas below.

Here α_z, β_z are functions of parameters $\alpha_{-\overline{z}}, \beta_{-\overline{z}} \in \mathbb{C}$. Indeed, in view of (4.11) and (4.12) $\mathbf{h}_z = -\mathbf{h}_{-\overline{z}} + (\overline{z}^2 - z^2)\psi(\mathcal{B})^*(\mathbf{H}_{a\mathbf{q}} - z^2I)^{-1}\psi(\mathcal{B})\mathbf{h}_{-\overline{z}}$ and hence,

$$\begin{bmatrix} \alpha_z \\ \beta_z \end{bmatrix} e^{-izx} = (-I + (\overline{z}^2 - z^2)\psi(\mathcal{B})^* (\mathbf{H}_{a\mathbf{q}} - z^2 I)^{-1}\psi(\mathcal{B})) \begin{bmatrix} \alpha_{-\overline{z}} \\ \beta_{-\overline{z}} \end{bmatrix} e^{i\overline{z}x}. \tag{4.15}$$

The S-matrix S(z) depends on the choice of $\mathbf{H}_{a\mathbf{q}}$. If $\mathbf{H}_{a\mathbf{q}} = \mathbf{H}_{\infty}$, then this operator is a positive self-adjoint extension of the symmetric operators \mathcal{B}^2 and B^2 . By Theorem 2.1 one can construct two pairs of subspaces D_{\pm} that are determined by \mathcal{B} and B, respectively. Therefore, one can define two S-matrices $S_1(\cdot)$ and $S(\cdot)$ for \mathbf{H}_{∞} corresponding to the cases where \mathbf{H}_{∞} is considered as an extension of \mathcal{B}^2 or an extension of \mathcal{B}^2 . The both of S-matrices are defined by (2.10) but, in the first case, C(z) = 0 and, therefore $S_1(z) = \sigma_0$. In view of [14, Proposition 3.1],

$$S(z) = \begin{bmatrix} \Psi_1(z) & 0 \\ 0 & \Psi_2(z) \end{bmatrix} S_1(z) = \begin{bmatrix} \Psi_1(z) & 0 \\ 0 & \Psi_2(z) \end{bmatrix}, \tag{4.16}$$

where $\Psi_j(z)$ are holomorphic functions in \mathbb{C}_- such that $|\Psi_j(z)| < 1$ and $\overline{\Psi_j(z)} = \Psi_j(-\overline{z})$. Moreover, the boundary values of $\Psi_j(z)$ on \mathbb{R} coincide with $\psi_j(-\delta)/\psi_j(\delta)$.

Due to (4.15), the coefficients α_z, β_z in (4.14) depend on the choice of $\mathbf{H}_{a\mathbf{q}}$. The resolvent formula (3.7) and (4.15) allow one to present $\alpha_z = \alpha_z(\mathbf{H}_{a\mathbf{q}}), \ \beta_z = \beta_z(\mathbf{H}_{a\mathbf{q}})$ as the sum of $\alpha_z(\mathbf{H}_{\infty}), \beta_z(\mathbf{H}_{\infty})$ and a function that is determined by the difference between $(\mathbf{H}_{a\mathbf{q}} - z^2I)^{-1}$ and $(\mathbf{H}_{\infty} - z^2I)^{-1}$ (see the second part in (3.7)). Such decomposition and (4.16) allows one to rewrite (4.14):

$$S(z) \begin{bmatrix} \alpha_{-\overline{z}} \\ \beta_{-\overline{z}} \end{bmatrix} = \begin{bmatrix} \Psi_1(z)\alpha_{-\overline{z}} \\ \Psi_2(z)\beta_{-\overline{z}} \end{bmatrix} - \frac{ze^{izx}}{Re} z (\overline{z}^2 - z^2) \frac{(\mathbf{h}_{-\overline{z}}, \psi(\mathcal{B})^* \mathbf{u}_{-\overline{z}})_+}{a - W(z^2)} \psi(\mathcal{B})^* \mathbf{u}_z. \quad (4.17)$$

In view of (4.3) with $\mu = -\overline{z}$

$$\frac{(\overline{z}^2 - z^2)(\mathbf{h}_{-\overline{z}}, \psi(\mathcal{B})^* \mathbf{u}_{-\overline{z}})_+}{Re \ z} = 2i \left\langle \left[\begin{array}{c} \alpha_{-\overline{z}} \\ \beta_{-\overline{z}} \end{array} \right], \left[\begin{array}{c} c(-\overline{z}, q_1) \\ c(-\overline{z}, q_2) \end{array} \right] \right\rangle,$$

where $\langle \cdot, \cdot \rangle$ is the inner product in \mathbb{C}^2 . Substituting this expression into (4.17) and using (4.3) with $\mu = z$, we obtain

$$S(z)\left[\begin{array}{c}\alpha_{-\overline{z}}\\\beta_{-\overline{z}}\end{array}\right]=\left[\begin{array}{c}\Psi_1(z)\alpha_{-\overline{z}}\\\Psi_2(z)\beta_{-\overline{z}}\end{array}\right]-\frac{2zi}{a-W(z^2)}\left\langle\left[\begin{array}{c}\alpha_{-\overline{z}}\\\beta_{-\overline{z}}\end{array}\right],\left[\begin{array}{c}c(-\overline{z},q_1)\\c(-\overline{z},q_2)\end{array}\right]\right\rangle\left[\begin{array}{c}c(z,q_1)\\c(z,q_2)\end{array}\right].$$

A rudimentary linear algebra exercise leads to the conclusion this formula for S(z) can be rewritten as (4.8) for $z \in \mathbb{C}_- \setminus i\mathbb{R}_-$. Since the S-matrix is holomorphic in the lower half-plain, the formula (4.8) remains true for \mathbb{C}_- .

The expression (4.8) is based on the Krein–Naimark resolvent formula (3.7) and it allows one to establish various useful relationships between S-matrix and the operator $\mathbf{H}_{a\mathbf{q}}$. An alternative formula for S-matrix in terms of reflection and transmission coefficients is presented below.

By virtue of Lemma 4.1,

$$P_{\mathfrak{H}_0} \left[\begin{array}{c} e^{i\overline{z}x} \\ 0 \end{array} \right] = \psi(\mathcal{B})\psi(\mathcal{B})^* \left[\begin{array}{c} e^{i\overline{z}x} \\ 0 \end{array} \right] = \psi(\mathcal{B}) \left[\begin{array}{c} \overline{\psi_1(-z)} \\ 0 \end{array} \right] e^{i\overline{z}x}$$
(4.18)

and, similarly,
$$P_{\mathfrak{H}_0} \left[\begin{array}{c} \alpha_z \\ \beta_z \end{array} \right] e^{-izx} = \psi(\mathcal{B}) \left[\begin{array}{c} \alpha_z \overline{\psi_1(\overline{z})} \\ \beta_z \overline{\psi_2(\overline{z})} \end{array} \right] e^{-izx}.$$

Setting $\mathbf{h}_{-\overline{z}} = \begin{bmatrix} \overline{\psi_1(-z)} \\ 0 \end{bmatrix} e^{i\overline{z}x}$ in (4.9) and using (4.18) we obtain

$$(\mathbf{H}_{a\mathbf{q}} - z^2 I)\mathbf{f} = (\overline{z}^2 - z^2)\psi(\mathcal{B})\mathbf{h}_{-\overline{z}} = (\overline{z}^2 - z^2)P_{\mathfrak{H}_0}\begin{bmatrix} e^{i\overline{z}x} \\ 0 \end{bmatrix}, \quad z \in \mathbb{C}_- \setminus i\mathbb{R}_-$$

and, in view of (4.10), (4.12), its solution \mathbf{f} satisfies the relation

$$P_{\mathfrak{H}_0}\mathbf{f} = \psi(\mathcal{B}) \left[\begin{array}{c} \overline{\psi_1(-z)} \\ 0 \end{array} \right] e^{i\overline{z}x} + \psi(\mathcal{B}) \left[\begin{array}{c} \alpha_z \\ \beta_z \end{array} \right] e^{-izx} = P_{\mathfrak{H}_0} \left[\begin{array}{c} e^{i\overline{z}x} + R_z^1 e^{-izx} \\ T_z^1 e^{-izx} \end{array} \right],$$

where

$$R_z^1 = \frac{\alpha_z}{\overline{\psi_1(\overline{z})}}, \quad T_z^1 = \frac{\beta_z}{\overline{\psi_2(\overline{z})}}$$

are called the reflection and the transmission coefficients, respectively.

Similarly, assuming $\mathbf{h}_{-\overline{z}} = \begin{bmatrix} 0 \\ \psi_2(-z) \end{bmatrix} e^{i\overline{z}x}$ and considering the solution \mathbf{f} of

$$(\mathbf{H}_{a\mathbf{q}}-z^2I)\mathbf{f}=(\overline{z}^2-z^2)P_{\mathfrak{H}_0}\left[\begin{array}{c}0\\e^{i\overline{z}x}\end{array}\right],$$

we obtain

$$P_{\mathfrak{H}_0}\mathbf{f} = P_{\mathfrak{H}_0} \left[\begin{array}{c} T_z^2 e^{-izx} \\ e^{i\overline{z}x} + R_z^2 e^{-izx} \end{array} \right], \quad R_z^2 = \frac{\beta_z}{\overline{\psi_2(\overline{z})}}, \quad T_z^2 = \frac{\alpha_z}{\overline{\psi_1(\overline{z})}}.$$

The reflection R_z^j and the transmission T_z^j coefficients described above allow one to obtain an alternative formula for S-matrix.

Theorem 4.7. The S-matrix of a positive self-adjoint operator $\mathbf{H}_{a\mathbf{q}}$ has the form

$$S(z) = \frac{-z}{Re\ z} \begin{bmatrix} \theta_{11}(z)R_z^1 + i\frac{Im\ z}{z} & \theta_{12}(z)T_z^2 \\ \theta_{21}(z)T_z^1 & \theta_{22}(z)R_z^2 + i\frac{Im\ z}{z} \end{bmatrix}, \quad \theta_{nm}(z) = \frac{\overline{\psi_n(\overline{z})}}{\overline{\psi_m(-z)}}.$$
(4.19)

Proof. Setting in (4.14)

$$\alpha_{-\overline{z}} = \overline{\psi_1(-z)}, \quad \beta_{-\overline{z}} = 0, \quad \alpha_z = \overline{\psi_1(\overline{z})} R_z^1, \quad \beta_z = \overline{\psi_2(\overline{z})} T_z^1$$

and

$$\alpha_{-\overline{z}} = 0, \quad \beta_{-\overline{z}} = \overline{\psi_2(-z)}, \quad \alpha_z = \overline{\psi_1(\overline{z})} T_z^2, \quad \beta_z = \overline{\psi_2(\overline{z})} R_z^2$$

we obtain a system of four linear equations with respect to unknowns coefficients of the S-matrix $S(z) = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix}$. Its solution gives rise to (4.19) for all $z \in \mathbb{C}_- \setminus i\mathbb{R}_-$. Since S(z) is holomorphic in \mathbb{C}_- , the formula (4.19) holds for all $z \in \mathbb{C}_-$.

4.3.1. Example of ordinary δ -interaction

In view of (3.2), the ordinary δ -interaction corresponds to $\mathbf{q} = 0$. The operators $\mathbf{H}_a = \mathbf{H}_{a0} = -\frac{d^2}{dx^2}$ have the domains:

$$\mathcal{D}(\mathbf{H}_{a\mathbf{q}}) = \{ \mathbf{f} \in W_2^2(\mathbb{R}_+, \mathbb{C}^2) : [\mathbf{f}]_s = 0, \quad [\mathbf{f}']_r = a[\mathbf{f}]_r \}.$$

The function $\mathbf{q} = 0$ is non-cyclic and one can set $\psi_1 = \psi_2 = 1$. Then $P_{\mathfrak{H}_0} = I$ and the reflection and the transmission coefficients are determined as follows:

$$R_z^1 = R_z^2 = \frac{-a + i(\overline{z} - z)}{a + 2iz}, \quad T_z^1 = T_z^2 = \frac{2iRe\ z}{a + 2iz}.$$

Substituting the obtained expressions in (4.19) and taking into account that $\theta_{nm}(z) = 1$, we obtain a matrix-valued S-function

$$S(z) = \frac{1}{a+2iz} \begin{bmatrix} a & -2iz \\ -2iz & a \end{bmatrix}, \tag{4.20}$$

which is holomorphic on \mathbb{C}_{-} for positive self-adjoint operators \mathbf{H}_{a} (the positivity of \mathbf{H}_{a} is distinguished by the condition $a \geq 0$).

The same formula (4.20) can be deduced from (4.8) if one take into account that $\Psi_j = 1$ since $\psi_j = 1$ and $W(z^2) = -2iz$, $c(z, q_j) = 1$ by virtue of (3.9) and (4.4), respectively.

5. OPERATORS $\mathbf{H}_{a\mathbf{q}}$ AND THEIR S-MATRICES

The example above leads to a natural assumption that the formulas (4.8), (4.19) allow to construct a function S(z) for each operator $\mathbf{H}_{a\mathbf{q}}$ (assuming, of course, that \mathbf{q} is non-cyclic). We will call it the S-matrix of $\mathbf{H}_{a\mathbf{q}}$. If $\mathbf{H}_{a\mathbf{q}}$ is positive self-adjoint, then the S-matrix is the consequence of proper arguments of the Lax-Phillips theory and it coincides with the analytical continuation of the Lax-Phillips scattering matrix into \mathbb{C}_- . Otherwise, S(z) is defined directly by (4.8), (4.19) and it can be considered as a characteristic function of $\mathbf{H}_{a\mathbf{q}}$. In this section, we describe properties of $\mathbf{H}_{a\mathbf{q}}$ in terms of the corresponding S-matrix.

It follows from (4.8) that a S-matrix of $\mathbf{H}_{a\mathbf{q}}$ is a meromorphic matrix-valued function on \mathbb{C}_{-} . Its poles describe the point spectrum of $\mathbf{H}_{a\mathbf{q}}$ in $\mathbb{C}\setminus[0,\infty)$.

Lemma 5.1. If $z \in \mathbb{C}_{-}$ is a pole of S(z), then z^{2} belongs to the point spectrum of \mathbf{H}_{aq} .

Proof. By virtue of (4.8), if $z \in \mathbb{C}_{-}$ is a pole for S(z) then $a = W(z^2)$. This identity means that $z^2 \in \sigma_p(\mathbf{H}_{a\mathbf{q}})$ because $\mathbf{H}_{a\mathbf{q}}$ is defined by (3.5) and $W(z^2)$ is the Weyl–Titchmarsh function associated to the boundary triplet $(\mathbb{C}, \Gamma_0, \Gamma_1)$ (see Section 3.1 and [26, Proposition 14.17]).

Remark 5.2. It may happen that the S-matrix 'does not hear' an eigenvalue z^2 . This is the case where the corresponding eigenfunction \mathbf{u}_z is orthogonal to $\psi(\mathcal{B})L_2(\mathbb{R}_+,\mathbb{C}^2)$ and, as a result, the coefficients $c(z,q_i)$ vanish, see Section 5.1.1.

Divide the half-plane \mathbb{C}_{-} into three parts

$$\mathbb{C}_{-}^{-} = \{z : Re \ z < 0\}, \quad \mathbb{C}_{-}^{0} = \{z : Re \ z = 0\}, \quad \mathbb{C}_{-}^{+} = \{z : Re \ z > 0\}.$$

Lemma 5.3. If S(z) has a pole in \mathbb{C}_{-}^{\mp} , then S(z) has to be analytical on the opposite part \mathbb{C}_{-}^{\pm} . If S(z) has a pole on the middle part \mathbb{C}_{-}^{0} , then S(z) is analytical on $\mathbb{C}_{-}^{-} \cup \mathbb{C}_{-}^{+}$ and $\mathbf{H}_{a\mathbf{q}}$ is a self-adjoint operator.

Proof. Let $z \in \mathbb{C}_{-}^{-}$ be a pole for S(z). By virtue of (4.8), $a = W(z^{2})$, where $Im \ z^{2} > 0$ and $Im \ a > 0$ since $Im \ W(z^{2})/Im \ z^{2} > 0$ [26, Section 14.5]. Similar arguments for a pole $z \in \mathbb{C}_{-}^{+}$ lead to the conclusion that $Im \ a < 0$. The obtained contradiction means that the existence of a pole in $\mathbb{C}_{-}^{+}(\mathbb{C}_{-}^{-})$ implies the absence of poles in $\mathbb{C}_{-}^{-}(\mathbb{C}_{+}^{+})$.

If $z \in \mathbb{C}^0_-$ is a pole, then $\mathbf{H}_{a\mathbf{q}}$ has a negative eigenvalue and $\mathbf{H}_{a\mathbf{q}}$ has to be self-adjoint due to [21, Corollary 5.2].

An eigenvalue $z^2 \in \mathbb{C} \setminus [0, \infty)$ of $\mathbf{H}_{a\mathbf{q}}$ is called an exceptional point if its geometrical multiplicity does not coincide with the algebraic one. The presence of an exceptional point means that $\mathbf{H}_{a\mathbf{q}}$ cannot be self-adjoint for any choice of inner product. It follows from Lemma 5.3 that an exceptional point z^2 is necessarily non-real and $z \in \mathbb{C}^- \cup \mathbb{C}^+$.

Lemma 5.4. A non-simple pole⁸⁾ z of S(z) corresponds to an exceptional point z^2 of \mathbf{H}_{aq} .

Proof. A non-simple pole z of S(z) means that the function $(a - W(\lambda))^{-1}$ has a non-simple pole for $\lambda = z^2$. This yields that $W'(z^2) = 0$, where $W'(\lambda) = dW/d\lambda$. In view of [21, Theorem 5.4], an eigenvalue z^2 of $\mathbf{H}_{a\mathbf{q}}$ is an exceptional point if and only if $W'(z^2) = 0$.

Lemma 5.5. Let $S_{\mathbf{H}_{a\mathbf{q}}}(z)$ be a S-matrix of $\mathbf{H}_{a\mathbf{q}}$. Then

$$S_{\mathbf{H}_{aq}}^*(z) = S_{\mathbf{H}_{\overline{aq}}}(-\overline{z}) = S_{\mathbf{H}_{aq}^*}(-\overline{z}).$$

Proof. Using (4.8) for the calculation of the adjoint, we get

$$S^*_{\mathbf{H}_{a\mathfrak{q}}}(z) = \left[\begin{array}{cc} \overline{\Psi_1(z)} & 0 \\ 0 & \overline{\Psi_2(z)} \end{array} \right] + \frac{2\overline{z}i}{\overline{a} - \overline{W(z^2)}} \left[\begin{array}{cc} c(-\overline{z},q_1)\overline{c(z,q_1)} & c(-\overline{z},q_1)\overline{c(z,q_2)} \\ c(-\overline{z},q_2)\overline{c(z,q_1)} & c(-\overline{z},q_2)\overline{c(z,q_2)} \end{array} \right].$$

In view of Theorem 4.6 $\overline{\Psi_j(z)} = \Psi_j(-\overline{z})$. Moreover, $\overline{W(z^2)} = W((-\overline{z})^2)$. This well-known property of the Weyl–Titchmarsh functions [26, Chap. 14] can easily be derived from (3.9). Taking these facts into account and using (4.8) for the calculation of $S_{\mathbf{H}_{\overline{a}\mathbf{q}}}(-\overline{z})$, we arrive at the conclusion that $S_{\mathbf{H}_{a}\mathbf{q}}^*(z) = S_{\mathbf{H}_{\overline{a}\mathbf{q}}}(-\overline{z})$. Now, to complete the proof it suffices to remark that $\mathbf{H}_{a\mathbf{q}}^* = \mathbf{H}_{\overline{a}\mathbf{q}}$ due to (3.5) and [26, Lemma 14.6]. \square

Corollary 5.6. Let S(z) be a S-matrix of $\mathbf{H}_{a\mathbf{q}}$. Then $\mathbf{H}_{a\mathbf{q}}$ is self-adjoint if and only if $S^*(z) = S(-\overline{z})$.

Proof. If $\mathbf{H}_{a\mathbf{q}}$ is self-adjoint, then $a \in \mathbb{R}$ and $S^*(z) = S(-\overline{z})$ due to Lemma 5.5. Conversely, as follows from the proof above, the relation $S^*(z) = S(-\overline{z})$ is possible only in the case of real a. This implies the self-adjointness of $\mathbf{H}_{a\mathbf{q}}$.

⁸⁾ A pole of order greater then one.

5.1. EXAMPLES

5.1.1. Even function q with finite support

We consider the simplest example of even function with finite support

$$q(x) = M\chi_{[-\rho,\rho]}(x), \quad M \in \mathbb{C}, \quad \rho > 0.$$

In this case, $Yq = \mathbf{q} = M \begin{bmatrix} \chi_{[0,\rho]}(x) \\ \chi_{[0,\rho]}(x) \end{bmatrix}$.

Denote $\psi(\delta) = e^{i\delta\rho}$. The function ψ belongs to $H^{\infty}(\mathbb{C}_+)$ and the operator $\psi(\mathcal{B})$ in (3.12) acts in $L_2(\mathbb{R}_+)$ as follows:

$$\psi(\mathcal{B})f = \begin{cases} f(x-\rho) & \text{for } x \ge \rho, \\ 0 & \text{for } x < \rho. \end{cases}$$
 (5.1)

Further, we extend the action of $\psi(\mathcal{B})$ onto $L_2(\mathbb{R}_+, \mathbb{C}^2)$ assuming in (3.14) that $\psi_1(\mathcal{B}) = \psi_2(\mathcal{B}) = \psi(\mathcal{B})$. It follows from (5.1) that $\psi(\mathcal{B})^* \mathbf{f} = \mathbf{f}(x + \rho)$. Hence,

$$P_{\mathfrak{H}_0} \mathbf{f} = \psi(\mathcal{B}) \psi(\mathcal{B})^* \mathbf{f} = \begin{cases} \mathbf{f}(x) & \text{for } x \ge \rho, \\ 0 & \text{for } x < \rho. \end{cases}$$
 (5.2)

The formula (5.2) and Lemma 3.2 imply that \mathbf{q} is non-cyclic. Therefore, for $\mathbf{H}_{a\mathbf{q}}$ there exists a S-matrix defined by (4.8). Let us specify the counterparts of (4.8). First of all we note that $\Psi_1(z) = \Psi_2(z) = e^{-2iz\rho}$ as the holomorphic continuation of $e^{-2i\delta\rho} = \frac{\psi(-\delta)}{\psi(\delta)}$ into \mathbb{C}_- . Further, in view of (3.6),

$$(\mathbf{H}_{\infty} - \mu^2 I)^{-1} \mathbf{q} = -\frac{M}{2\mu^2} [(e^{-i\mu\rho} + e^{i\mu m(x)} - 2)\mathbf{e}^{-i\mu x} + (e^{-i\mu m(x)} - e^{-i\mu\rho})\mathbf{e}^{i\mu x}],$$

where $m(x) = \min\{x, \rho\}$ and $\mu \in \mathbb{C}_-$. This formula and (4.4) lead to the conclusion that

$$c(\mu, q_1) = c(\mu, q_2) = e^{-i\mu\rho} \left(1 - \kappa_{\mu} \frac{M}{\mu^2} \right), \quad \kappa_{\mu} = 1 - \cos\mu\rho.$$

Our next step is the calculation of $W(z^2)$ using formula (3.9) and the expression for $(\mathbf{H}_{\infty} - \mu^2 I)^{-1}$, that gives

$$W(z^{2}) = -2iz - \frac{4Re\ M}{iz}(1 - e^{-iz\rho}) + \frac{|M|^{2}}{iz^{3}} [(e^{-iz\rho} - 2)^{2} - 2iz\rho - 1].$$

Substituting the expressions obtained above into (4.8) we find the S-matrix for $\mathbf{H}_{a\mathbf{q}}$

$$S(z) = e^{-2iz\rho} \left(\sigma_0 - \frac{2i(z^2 - \kappa_z M)(z^2 - \kappa_z \overline{M})}{z^3 (a - W(z^2))} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right).$$

Let us assume that $z_0 \in \mathbb{C}_-$ satisfies the relation $z_0^2 - \kappa_{z_0} M = 0$ and $W'(z_0^2) \neq 0$. Set $a = W(z_0^2)$. Then the operator $\mathbf{H}_{a\mathbf{q}}$ has the eigenvalue z_0^2 with eigenfunction \mathbf{u}_{z_0} . It follows from (3.8) and the explicit expression for $(\mathbf{H}_{\infty} - \mu^2 I)^{-1}$ that

$$\mathbf{u}_{z_0} = \frac{1 - \cos z_0(\rho - x)}{z_0^2} \mathbf{q}.$$

In view of (5.2), the eigenfunction \mathbf{u}_{z_0} is orthogonal to \mathfrak{H}_{o} and it has no impact on the S-matrix S(z) (no pole for $z=z_0$).

5.1.2. Odd function q with finite support

Similarly to the previous case, we consider the odd function

$$q(x) = M \operatorname{sign}(x) \chi_{[-\rho,\rho]}(x), \quad M \in \mathbb{C}, \quad \rho > 0.$$

In this case, $\mathbf{q} = M\begin{bmatrix} \chi_{[0,\rho]}(x) \\ -\chi_{[0,\rho]}(x) \end{bmatrix}$ is non-cyclic and it is orthogonal to the same subspace $\mathfrak{H}_0 = \psi(\mathcal{B})L_2(\mathbb{R}_+,\mathbb{C}^2)$ as above. Further,

$$c(\mu,q_1) = e^{-i\mu\rho} \left(1 - \kappa_\mu \frac{M}{\mu^2}\right), \quad c(\mu,q_2) = e^{-i\mu\rho} \left(1 + \kappa_\mu \frac{M}{\mu^2}\right)$$

and $W(z^2) = -2iz + \frac{|M|^2}{iz^3} [(e^{-iz\rho} - 2)^2 - 2iz\rho - 1]$. Then (4.8) takes the form

$$S(z) = e^{-2iz\rho} \left(\sigma_0 - \frac{2zi}{a - W(z^2)} \begin{bmatrix} 1 - \kappa_z \frac{2\text{Re}M}{z^2} + \kappa_z^2 \frac{|M|^2}{z^4} & 1 - \kappa_z \frac{2\text{Im}M}{z^2} - \kappa_z^2 \frac{|M|^2}{z^4} \\ 1 + \kappa_z \frac{2\text{Im}M}{z^2} - \kappa_z^2 \frac{|M|^2}{z^4} & 1 + \kappa_z \frac{2\text{Re}M}{z^2} + \kappa_z^2 \frac{|M|^2}{z^4} \end{bmatrix} \right).$$

It is easy to see that the entries of the last matrix can not vanish simultaneously. This means that $z \in \mathbb{C}_-$ is a pole of S(z) if and only if $a = W(z^2)$. Therefore, in contrast to Section 5.1.1, the poles of S(z) completely determine the point spectrum of $\mathbf{H}_{a\mathbf{q}}$ in $\mathbb{C} \setminus \mathbb{R}_+$.

5.1.3. Functions q with infinite support

The range of applicability of our results is not limited to operators $\mathbf{H}_{a\mathbf{q}}$, where $\mathbf{q} = Yq$ has finite support. Due to Lemma 3.2 and Theorem 3.3, the S-matrix (4.8) can be constructed for an operator $\mathbf{H}_{a\mathbf{q}}$ when \mathbf{q} is non-cyclic with respect to the backward shift operator T^* in $L_2(\mathbb{R}_+, \mathbb{C}^2)$. Various examples of non-cyclic functions can be found in [13,17]. Consider, for instance, the function $q(x) = P_m(x)e^{-|x|}$, where P_m is a polynomial of order m. Then

$$\mathbf{q} = \begin{bmatrix} P_m(x) \\ P_m(-x) \end{bmatrix} e^{-x}, \quad x \ge 0.$$

Decompose the functions $P_m(\pm x)e^{-x} \in L_2(\mathbb{R}_+)$:

$$e^{-x}P_m(x) = \sum_{n=0}^m c_n q_n(2x), \quad e^{-x}P_m(-x) = \sum_{n=0}^m d_n q_n(2x),$$
 (5.3)

with respect to the orthonormal basis of the Laguerre functions

$$q_n(x) = \frac{e^{x/2}}{n!} \frac{d^n}{dx^n} (x^n e^{-x}), \quad n = 0, 1 \dots$$

Using the relation $Tq_n(2x) = q_{n+1}(2x)$ [3, p. 363], where T is defined by (3.11) and taking (5.3) into account we arrive at the conclusion that \mathbf{q} is orthogonal to the subspace $T^{m+1}L_2(\mathbb{R}_+) = \psi(\mathcal{B})L_2(\mathbb{R}_+)$, where $\psi(\delta) = \left(\frac{\delta-i}{\delta+i}\right)^{m+1}$ belongs to $H^{\infty}(\mathbb{C}_+)$. Hence, \mathbf{q} is a non-cyclic function and for operators $\mathbf{H}_{a\mathbf{q}}$ there exist S-matrices defined by (4.8).

Let us calculate the S-matrix for the function $q(x) = Me^{-|x|}$. In this case, one can set m = 0, $\psi(\delta) = \frac{\delta - i}{\delta + i}$, and $\Psi_1(z) = \Psi_2(z) = \left(\frac{z + i}{z - i}\right)^2$ as the holomorphic continuation of $\frac{\psi(-\delta)}{\psi(\delta)} = \left(\frac{\delta + i}{\delta - i}\right)^2$ into \mathbb{C}_- . Further,

$$(\mathbf{H}_{\infty} - z^2 I)^{-1} \mathbf{e}^{-x} = \frac{\mathbf{e}^{-izx} - \mathbf{e}^{-x}}{1 + z^2}, \quad W(z^2) = -2iz - \frac{4Re\ M}{1 + iz} + \frac{|M|^2}{(1 + iz)^2}.$$

It follows from (4.4) and the Poisson formula [24, p.147] that

$$c(\mu, q_i) = \frac{\mu + i}{\mu - i} - \frac{M}{(\mu - i)^2} = \frac{\mu^2 + 1 - M}{(\mu - i)^2}.$$

After substitution of the expressions above into (4.8) and elementary transformations we find

$$S(z) = \left(\frac{z+i}{z-i}\right)^2 \left(\sigma_0 - \frac{2iz(1-\frac{M}{z^2+1})(1-\frac{\overline{M}}{z^2+1})}{a-W(z^2)} \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right]\right).$$

Let us assume for the simplicity that $M \in i\mathbb{R}$. Then

$$S(z) = \left(\frac{z+i}{z-i}\right)^2 \left(\sigma_0 - \frac{2iz(1 + \frac{|M|^2}{(z^2+1)^2})}{a - W(z^2)} \begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix}\right)$$
(5.4)

and $W(\lambda) = -2i\sqrt{\lambda} + \frac{|M|^2}{(1+i\sqrt{\lambda})^2}$, where $\lambda = z^2$ and $\sqrt{\lambda} = z$.

Since the first derivative of $W(\lambda)$ is

$$W'(\lambda) = -\frac{i}{\sqrt{\lambda}} \left(1 + \frac{|M|^2}{(1 + i\sqrt{\lambda})^3} \right),$$

the equation $W'(\lambda) = 0$ have the following roots $\lambda_j = z_j^2$, $j \in \{1, 2, 3\}$, where

$$z_1 = -\frac{\sqrt{3}}{2}|M|^{\frac{2}{3}} + i(1 - \frac{1}{2}|M|^{\frac{2}{3}}), \quad z_2 = -\overline{z_1}, \quad z_3 = i(|M|^{\frac{2}{3}} + 1).$$

Assume that $|M|^2 > 8$. Then $z_1, z_2 \in \mathbb{C}_-$. Denote $a = W(z_1^2)$. Then the S-matrix (5.4) has a non-simple pole for $z = z_1$ and, by Lemma 5.4, the operator $\mathbf{H}_{a\mathbf{q}}$ has an exceptional point z_1^2 . (The choice of $z_2 = -\overline{z}_1$ instead of z_1 leads to the conclusion that the point \overline{z}_1^2 is exceptional for the adjoint operator $\mathbf{H}_{a\mathbf{q}}^* = \mathbf{H}_{\overline{a}\mathbf{q}}$.)

The obtained result shows that the existence of exceptional points for some operators of the set $\{\mathbf{H}_{a\mathbf{q}}\}_{a\in\mathbb{C}}$, where $\mathbf{q}(x)=M\mathbf{e}^{-x},\,M\in i\mathbb{R}$ depends on the absolute value of the imaginary M. If $|M|^2>8$, then there exist two operators $\mathbf{H}_{a\mathbf{q}}$ and $\mathbf{H}_{\overline{a}\mathbf{q}}$ with the exceptional points z_1^2 and \overline{z}_1^2 , respectively. On the other hand, if |M| is sufficiently small $(|M|^2\leq 8)$, then the collection of operators $\{\mathbf{H}_{a\mathbf{q}}\}_{a\in\mathbb{C}}$ has no exceptional points.

Acknowledgements

This research was partially supported by the Faculty of Applied Mathematics AGH UST statutory tasks within subsidy of Ministry of Science and Higher Education.

REFERENCES

- V.M. Adamyan, Nondegenerate unitary couplings of semiunitary operators, Funct. Anal. Appl. 7 (1973), no. 4, 255–267.
- [2] V.M. Adamyan, B.S. Pavlov, Null-range potentials and M.G. Krein's formula for generalized resolvents, J. Sov. Math. 42 (1988), 1537–1550.
- [3] N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Spaces, Dover Publication Inc, New York, 1993.
- [4] S. Albeverio, L. Nizhnik, Schrödinger operators with nonlocal point interactions, J. Math. Anal. Appl. 332 (2007), 884–895.
- [5] S. Albeverio, L. Nizhnik, Schrödinger operators with nonlocal potentials, Methods Funct. Anal. Topology 19 (2013), no. 3, 199–210.
- [6] S. Albeverio, R. Hryniv, L. Nizhnik, Inverse spectral problems for nonlocal Sturm-Liouville operators, Inverse Problems 23 (2007), 523-536.
- [7] F. Bagarello, J.-P. Gazeau, F.H. Szafraniec, M. Znojil (eds.), Non-Selfadjoint Operators in Quantum Physics. Mathematical Aspects, J. Wiley & Sons, Hoboken, New Jersey, 2015.
- [8] J. Behrndt, M.M. Malamud, H. Neidhardt, Scattering matrices and Dirichlet-to-Neumann maps, J. Funct. Anal. 273 (2017), 1970–2025.
- [9] C.M. Bender, P.E. Dorey, T.C. Dunning, A. Fring, D.W. Hook, H.F. Jones, S. Kuzhel, G. Levai, R. Tateo, PT-Symmetry in Quantum and Classical Physics, World Scientific, Singapore, 2019.
- [10] J. Brasche, L.P. Nizhnik, One-dimensional Schrödinger operators with general point interactions, Methods Funct. Anal. Topology 19 (2013), no. 1, 4–15.
- [11] K.D. Cherednichenko, A.V. Kiselev, L.O. Silva, Functional model for extensions of symmetric operators and applications to scattering theory, Networks and Heterogeneous Media 13 (2018), no. 2, 191–215.
- [12] P.A. Cojuhari, S. Kuzhel, Lax-Phillips scattering theory for PT-symmetric ρ-perturbed operators, J. Math. Phys. 53 (2012), 073514.
- [13] R.G. Douglas, H.S. Shapiro, A.L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier 20 (1970), 37–76.

- [14] M. Gawlik, A. Główczyk, S. Kuzhel, On the Lax-Phillips scattering matrix of the abstract wave equation, Banach J. Math. Anal. 13 (2019), no. 2, 449–467.
- [15] M.L. Gorbachuk, V.I. Gorbachuk, Boundary-Value Problems for Operator Differential Equations, Kluwer, Dordrecht, 1991.
- [16] S. Kuzhel, On the determination of free evolution in the Lax-Phillips scattering scheme for second-order operator-differential equations, Math. Notes 68 (2000), 724-729.
- [17] S. Kuzhel, Nonlocal perturbations of the radial wave equation. Lax-Phillips approach, Methods Funct. Anal. Topology 8 (2002), no. 2, 59–68.
- [18] S. Kuzhel, On the inverse problem in the Lax-Phillips scattering theory method for a class of operator-differential equations, St. Petersburg Math. J. 13 (2002), 41–56.
- [19] S. Kuzhel, On conditions of applicability of the Lax-Phillips scattering scheme to investigation of abstract wave equation, Ukrainian Math. J. 55 (2003), 621–630.
- [20] A. Kuzhel, S. Kuzhel, Regular Extensions of Hermitian Operators, VSP, Utrecht, 1998.
- [21] S. Kuzhel, M. Znojil, Non-self-adjoint Schrödinger operators with nonlocal one-point interactions, Banach J. Math. Anal. 11 (2017), no. 4, 923–944.
- [22] P. Lax, Translation invariant spaces, Acta Math. 101 (1959), 163–178.
- [23] P. Lax, R. Phillips, Scattering Theory, Revised Edition, Academic Press, London, 1989.
- [24] N.K. Nikolski, Operators, Functions, and Systems: an Easy Reading, Volume I, AMS, USA, 2002.
- [25] M. Reed, B. Simon, Methods of Modern Mathematical Physics, Volume III: Scattering Theory, Academic Press, New York, 1979.
- [26] K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Springer, Berlin, 2012.

Anna Główczyk (corresponding author) glowczyk@agh.edu.pl

https://orcid.org/0000-0001-5205-827X

AGH University of Science and Technology Faculty of Applied Mathematics AGH al. Mickiewicza 30, 30–059 Kraków

Sergiusz Kużel kuzhel@agh.edu.pl

https://orcid.org/0000-0002-4322-6611

AGH University of Science and Technology Faculty of Applied Mathematics AGH al. Mickiewicza 30, 30–059 Kraków

Received: September 1, 2020. Accepted: February 1, 2021.