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Abstract. Schrödinger operators with nonlocal δ-interaction are studied with the use of the
Lax–Phillips scattering theory methods. The condition of applicability of the Lax–Phillips
approach in terms of non-cyclic functions is established. Two formulas for the S-matrix
are obtained. The first one deals with the Krein–Naimark resolvent formula and the
Weyl–Titchmarsh function, whereas the second one is based on modified reflection and
transmission coefficients. The S-matrix S(z) is analytical in the lower half-plane C− when
the Schrödinger operator with nonlocal δ-interaction is positive self-adjoint. Otherwise,
S(z) is a meromorphic matrix-valued function in C− and its properties are closely related to
the properties of the corresponding Schrödinger operator. Examples of S-matrices are given.
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1. INTRODUCTION

Theory of non self-adjoint operators attracts a steady interests in various fields of
mathematics and physics, see, e.g., [7] and the reference therein. This interest grew
considerably due to the recent progress in theoretical physics of pseudo-Hermitian
Hamiltonians [9].

In the present paper we study non-self-adjoint Schrödinger operators with nonlocal
point interaction. Self-adjoint operators have been investigated by Nizhnik et al.
[4–6,10]. The case of non-self-adjoint operators with nonlocal point interaction is more
complicated and it requires more detailed analysis. One of the simplest models of
a non-local δ-interaction is

− d2

dx2 + a < δ, · > δ(x)+ < δ, · > q(x) + (·, q)δ(x), a ∈ C, (1.1)
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where δ is the delta-function, q ∈ L2(R), and (·, ·) is the inner product (linear in
the first argument) in L2(R). The expression (1.1) determines the following operator
acting in L2(R):

Haqf = −d
2f

dx2 + f(0)q(x), (1.2)

D(Haq) =
{
f ∈W 2

2 (R\{0}) : fs(0) = 0
f ′s(0) = afr(0) + (f, q)

}
, (1.3)

where fs(0) = f(0+)− f(0−) and fr(0) = f(0+) + f(0−)
2 .

The operator Haq is self-adjoint if and only if a ∈ R and it can be interpreted
as a Hamiltonian corresponding to the non-local δ-interaction (1.1). Setting q = 0,
we obtain an operator Ha := Ha0 generated by the ordinary δ-interaction

− d2

dx2 + a < δ, · > δ(x).

The spectral analysis of non-self-adjointHaq (a ∈ C\R) was carried out in [21]. One
of interesting features is that non-real a determines the measure of non-self-adjointness
of Haq, while the function q is responsible for the appearance of exceptional points
and eigenvalues on continuous spectrum [21, Example 5.3 and Section 6].

In the present paper, we investigate Haq by the scattering theory methods. For the
case a = 0, the scattering matrix S(δ) of H0q was constructed in [4, Section 5] with
the use of modified Jost solutions. In contrast to [4] we study the general case a ∈ C
with the use of an operator-theoretical interpretation of the Lax–Phillips approach
in scattering theory [23] that was consistently developed in [12,16,18,19]. We prefer
this approach because it involves a simple algorithm for an explicit calculation of the
analytic continuation1) of the scattering matrix into the lower half-plane C−.

The paper is organized as follows. We begin with presentation of necessary facts
about the Lax–Phillips scattering theory. Further, in Section 3, we analyze for which
operators Haq one can apply the Lax–Phillips approach. For technical reasons it is
convenient to work with unitary equivalent copies Haq of the operators Haq acting in
the Hilbert space L2(R+,C2), see (3.2), (3.3). The main result (Theorem 3.3) implies
that Haq can be investigated in framework of the Lax–Phillips theory under the
condition that q is non-cyclic with respect to the backward shift operator. For such
kind of positive self-adjoint operators Haq, two formulas of the analytical continuation
S(z) of the scattering matrix S(δ) into C− are obtained in Section 4. The first one
(4.8) deals with the Krein–Naimark resolvent formula (3.7) and the Weyl–Titchmarsh
function (3.9), whereas the second one (4.19) is based on the modified reflection Riz
and the transmission T iz coefficients that is more familiar for non-stationary scattering
theory.

We mention that the relationship between scattering matrices and the extension
theory subjects like Krein–Naimark formula and Weyl–Titchmarsh function was

1) “The most beautiful and important aspect of the Lax–Phillips approach is that certain analyticity
properties of the scattering operator arise naturally” [25, p. 211].
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established for various cases [2, 8, 11] and it provides additional possibilities for the
study of scattering systems.

In Section 5, the formula (4.8) is used for the definition of S-matrix S(z) for each
operator Haq (assuming, of course, that q is non-cyclic). If Haq is positive self-adjoint,
then the S-matrix is the direct consequence of proper arguments of the Lax–Phillips
theory and it coincides with the analytical continuation of the Lax–Phillips scattering
matrix into C−. Otherwise, S(z) defined by (4.8) is a meromorphic matrix-valued
function in C− and it can be considered as a characteristic function of Haq. Lemmas
5.1–5.5 and Corollary 5.6 justify such a point of view by showing a close relation-
ship between properties of non-self-adjoint Haq and theirs S-matrices. Examples of
S-matrices for various non-cyclic q are given in Section 5.1.

Throughout the paper, D(H), R(H), and kerH denote the domain, the range,
and the null-space of a linear operator H, respectively, whereas H �D stands for
the restriction of H to the set D and

∨
t∈RXt means the closure of linear span of

sets Xt. The symbol H2(C+), where C+ = {z ∈ C : Im z > 0} is used for the Hardy
space. The Sobolev space is denoted as W p

2 (I) (I ∈ {R,R+}, p ∈ {1, 2}).

2. ELEMENTS OF LAX–PHILLIPS SCATTERING THEORY

Here all necessary results about the Lax–Phillips scattering theory are presented.
The monographs [23], [20, Chap. III] and the papers [16, 19] are recommended as
complementary reading on the subject.

2.1. APPLICABILITY OF THE LAX–PHILLIPS SCATTERING APPROACH

A continuous group of unitary operators W (t) acting in a Hilbert space W is a subject
of the Lax–Phillips scattering theory [23] if there exist so-called incoming D− and
outgoing D+ subspaces of W with properties:

(i)
W (t)D+ ⊂ D+, W (−t)D− ⊂ D−, t ≥ 0,

(ii) ⋂

t>0
W (t)D+ =

⋂

t>0
W (−t)D− = {0}.

Conditions (i)–(ii) allow to construct incoming and outgoing spectral representa-
tions for the restrictions of W (t) onto the subspaces

M− =
∨

t∈R
W (t)D− and M+ =

∨

t∈R
W (t)D+, (2.1)

respectively and define the corresponding Lax–Phillips scattering matrix S(δ) (δ ∈ R)
whose values are contraction operators [1], [20, Chap. 3].
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Furthermore, the additional condition of orthogonality
(iii)

D− ⊥ D+

guarantees that S(δ) is the boundary value of a contracting operator-valued function
S(z) holomorphic in the lower half-plane C− [23, p. 52].

Usually, the Lax–Phillips scattering matrix is defined with the use of
an operator-differential equation

d2

dt2
u = −Hu, (2.2)

where H is a positive2) self-adjoint operator in a Hilbert space H. Denote by HH
the completion of D(H) with respect to the norm ‖·‖2H := (H·, ·).

The Cauchy problem for (2.2) determines a continuous group of unitary operators
W (t) in the space

W = HH ⊕ H =
{[

u
v

]
: u ∈ HH , v ∈ H

}
.

If H = −∆ and H = L2(Rn), then (2.2) coincides with the wave equation utt = ∆u
and the corresponding subspaces D± constructed in [23] possess the additional property

JD− = D+, (2.3)

where J is a self-adjoint and unitary operator in W (so-called time-reversal operator):

J

[
u
v

]
=
[

u
−v

]
. (2.4)

Relation (2.3) is a characteristic property of dynamics governed by wave equations.
It is clear that, the existence of subspaces D± for W (t) is determined by specific

properties of H in (2.2). Before explaining which properties of H are needed, we
recall that a symmetric operator B is called simple if its restriction on any nontrivial
reducing subspace is not a self-adjoint operator. The maximality of B means that
there are no symmetric extensions of B. The latter is equivalent to the fact that one
of defect numbers of B is equal to zero. In what follows, without loss of generality, we
assume that B has zero defect number in C+, i.e., dim ker(B∗ − iI) = 0, where B∗ is
the adjoint of B. The latter means that

ker(B∗2 − µ2I) = ker(B∗ − µI), µ ∈ C−. (2.5)

Theorem 2.1 ([19,20]). Let H be a positive self-adjoint operator in a Hilbert space H.
The following are equivalent:
(i) the group W (t) of solutions of the Cauchy problem of (2.2) has subspaces D±

with properties (i)–(iii) and (2.3),
(ii) there exists a simple maximal symmetric operator B acting in a subspace H0

of H such that H is an extension (with exit in the space H) of the symmetric
operator B2.

2) i.e. (Hf, f) > 0 for nonzero f ∈ D(H).
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2.2. THE LAX–PHILLIPS SCATTERING MATRIX
AND ITS ANALYTICAL CONTINUATION

By Theorem 2.1, the unitary group W (t) can be investigated by the Lax–Phillips
scattering methods if and only if H is an extension of a symmetric operator B2 acting
in a subspace H0 of H. A simple maximal symmetric operator B in Theorem 2.1
turns out to be a useful technical tool allowing one to exhibit principal parts of the
Lax–Phillips theory in a simple form. In particular, the subspaces D± coincide with
the closure3) of the sets:

{[
u
iBu

]
| ∀u ∈ D(B2)

}
and

{[
u
−iBu

]
| ∀u ∈ D(B2)

}
, (2.6)

respectively. Moreover, for all t ≥ 0,

W (t)
[

u
iBu

]
=
[

V (t)u
iBV (t)u

]
, W (−t)

[
u
−iBu

]
=
[

V (t)u
−iBV (t)u

]
, (2.7)

where V (t) = eiBt is a semigroup of isometric operators in H0.
The formulas (2.1), (2.6), and (2.7) allow one to construct the incoming/outgoing

spectral representations for the restrictions of W (t) onto M± in an explicit form
[14, Section 2.1]. The latter leads to a simple method for the calculation of the
Lax–Philips scattering matrix S(·) [12,18]. Actually, we need only a positive bound-
ary triplet4) (H,Γ0,Γ1) of B∗2 defined as follows: denote H = ker(B∗2 + I), then
D(B∗2) = D(B∗B)+̇H and each vector f ∈ D(B∗2) can be decomposed:

f = u+ h, u ∈ D(B∗B), h ∈ H. (2.8)

The formula (2.8) allows to define the linear mappings Γi : D(B∗2)→ H

Γ0f = Γ0(u+ h) = h, Γ1f = Γ1(u+ h) = PH(B∗B + I)u, (2.9)

where PH is the orthogonal projector of H0 onto the subspace H.
Theorem 2.2 ([12, 18]). If conditions of Theorem 2.1 hold, then the Lax–Phillips
scattering matrix S(·) for the unitary group W (t) of Cauchy problem solutions of (2.2)
has the following analytical continuation into C−:

S(z) = [I − 2(1 + iz)C(z)][I − 2(1− iz)C(z)]−1, z ∈ C−, (2.10)

where the operators C(z) : H → H are determined by the relation

C(z)Γ1u = Γ0u, u∈PH0(H − z2I)−1 ker(B∗ + zI), z ∈ C−. (2.11)

An investigation of C(z) carried out in [18] shows that the values of S(z) are
contraction operators in H and S∗(z) = S(−z).

3) In the space W.
4) See [15, Chap. 3] for definition of boundary triplets and positive boundary triplets.
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In what follows, the analytical continuation (2.10) of the Lax–Phillips scattering
matrix will be called the S-matrix of the positive self-adjoint operator H in (2.2). For
this reason it is natural to ask: To what extend the S-matrix determines H?

We recall that a self-adjoint operator H is called minimal if each subspace of H	H0
that reduces H is trivial. Minimal self-adjoint extensions H1 and H2 of B2 are called
unitary equivalent if there exists an unitary operator Z in H such that ZH1 = H2Z
and Zf = f for all f ∈ H0.

It follows from [18] that the S-matrix determines a minimal positive self-adjoint
extension H of B2 up to unitary equivalence.
Remark 2.3. Various approaches in non-stationary scattering theory are based on
the comparing of two evolutions: “unperturbed” and “perturbed”. The subspaces
D± characterize unperturbed evolution in the Lax–Phillips approach. Due to (2.6),
the subspaces D± are described by the operator B. The operator B∗B is a positive
self-adjoint extension of B2 in the space H0 and the group W0(t) of solutions of
the Cauchy problem of (2.2) (with B∗B instead of H) determines an unperturbed
evolution. The corresponding wave operators Ω± = s− limt→±∞W (−t)W0(t) exist
and are isometric in H0. The scattering operator Ω∗+Ω− coincides with the Lax–Phillips
scattering matrix S(δ) in the spectral representation of the unperturbed evolution
W0(t) [18].

3. PROPERTIES OF OPERATORS Haq

3.1. PRELIMINARIES

For technical reasons it is convenient to calculate the S-matrix for unitary equivalent
copy of the operator Haq in the Hilbert space L2(R+,C2). To do that, for each function
f ∈ L2(R), we define the operator5)

Y f =
[

f(x)
f(−x)

]
= f(x), x > 0

that maps isometrically L2(R) onto L2(R+,C2) and maps W 2
2 (R\{0}) onto

W 2
2 (R+,C2). For all f = Y f , f ∈W 2

2 (R\{0}) we denote [f ]r = fr(0) and [f ]s = fs(0).
In other words,

[f ]r = 1
2 lim
x→+0

(f1(x) + f2(x)), [f ]s = lim
x→+0

(f1(x)− f2(x)), f =
[
f1
f2

]
. (3.1)

It is easy to see that Y Haq = HaqY , where Haq is defined by (1.2), (1.3) and
the operator

Haqf = − d
2f
dx2 + [f ]rq(x), q =

[
q1
q2

]
= Y q (3.2)

5) We will use the mathbf font for C2-valued functions of L2(R+,C2) in order to avoid confusion

with functions from L2(R). In particular, e−iµx ≡
[

e−iµx

e−iµx

]
.
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acts in L2(R+,C2) with domain of definition

D(Haq) = {f ∈W 2
2 (R+,C2) : [f ]s = 0, [f ′]r = a[f ]r + (f ,q)+}, (3.3)

where (f ,q)+ = (Y f, Y q)+ = (f, q) is the scalar product in L2(R+,C2).
When a → ∞, the formulas (3.2) and (3.3) determine a positive self-adjoint

operator in L2(R+,C2)

H∞ ≡ H∞q = − d2

dx2 , D(H∞) = {f ∈W 2
2 (R+,C2) : f(0) = 0}

that does not depend on the choice of q and can be decomposed

H∞f =
[
H∞f1
H∞f2

]
, H∞ = − d2

dx2 , D(H∞) = {f ∈W 2
2 (R+) : f(0) = 0}.

By analogy with [21, Section 5] (where the case of operators Haq has been studied)
we consider Haq and H∞ as restrictions of the maximal operator

Hmaxf = − d
2f
dx2 + [f ]rq(x), D(Hmax) = {f ∈W 2

2 (R+,C2) : [f ]s = 0}

onto the corresponding domain of definition.
The maximal operator Hmax has a boundary triplet (C,Γ0,Γ1), where

Γ0f = [f ]r, Γ1f = 2[f ′]r − (f ,q)+, f ∈ D(Hmax) (3.4)

and the formulas (3.2) and (3.3) are rewritten:

Haq = Hmax �D(Haq), D(Haq) = {f ∈ D(Hmax) : aΓ0f = Γ1f}. (3.5)

In particular, H∞ is the restriction of Hmax onto ker Γ0 and its resolvent is

(H∞ − z2I)−1f = i

2z [Az(x)e−izx + Bz(x)eizx], f ∈ L2(R+,C2), (3.6)

where z ∈ C− and

Az(x) =
∞∫

0

e−izsf(s)ds−
x∫

0

eizsf(s)ds, Bz(x) = −
∞∫

x

e−izsf(s)ds.

Lemma 3.1. The Krein–Naimark resolvent formula

(Haq − z2I)−1f = (H∞ − z2I)−1f + (f ,u−z)+
a−W (z2)uz(x) (3.7)

holds for a 6= W (z2). Here,

uµ(x) = e−iµx − (H∞ − µ2I)−1q, µ ∈ {z,−z} ⊂ C− (3.8)

is an eigenfunction of Hmax corresponding to the eigenvalue µ2 and

W (z2) = −2iz − 2(e−izx, Re q)+ + ((H∞ − z2I)−1q,q)+, z ∈ C−. (3.9)
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Proof. It follows from [21] that the subspace ker(Hmax − µ2I) is one dimensional and
it is generated by the function uµ defined by (3.8). Setting µ = z and using (3.4), we
conclude that Γ0uz = 1 and the Weyl–Titchmarsh function associated to the boundary
triplet (C,Γ0,Γ1) takes the form

W (z2) = Γ1uz = −2iz − 2[v′]r − (e−izx + v,q)+,

where v = (H∞ − z2I)−1q. In view of (3.6), v′(0) =
∫∞

0 e−izsq(s)ds and hence,

2[v′]r + (e−izx,q)+ = 2(e−izx, Re q)+, Re q =
[
Re q1
Re q2

]
.

Substituting this expression into the formula for W (z2) we obtain (3.9).
In terms of the boundary triplet (C,Γ0,Γ1), the Krein–Naimark resolvent formula

has the form [26, Theorem 14.18, Proposition 14.14]

(Haq − z2I)−1f = (H∞ − z2I)−1f + Γ1u
a−W (z2)uz(x),

where u = (H∞− z2I)−1f . In view of (3.6), u′(0) =
∫∞

0 e−izsf(s)ds. Taking (3.1) into
account,

2[u′]r =
∞∫

0

e−izs(f1(s) + f2(s))dx = (f , eizx)+.

Finally, using (3.4) and (3.8) with µ = −z, we obtain

Γ1u = (f , eizx)+ − (u,q)+ = (f , eizx − (H∞ − z2I)−1q)+ = (f ,u−z)+

that completes the proof.

3.2. APPLICABILITY OF THE LAX–PHILLIPS APPROACH FOR Haq

Denote by
B = i

d

dx
, D(B) = {u ∈W 1

2 (R+) : u(0) = 0} (3.10)

the first derivative operator in L2(R+). The same notation will be used for its analog
acting in L2(R+,C2). The both operators are simple maximal symmetric with zero
defect numbers in C+, and theirs Cayley transforms

T = (B − iI)(B + iI)−1 (3.11)

are forward shift operators in the corresponding spaces.
A function q ∈ L2(R+,C2) is called non-cyclic for the backward shift operator T ∗

if the subspace

Eq =
∞∨

n=0
T ∗nq

does not coincide with L2(R+,C2).
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Considering L2(R+) as a subspace of L2(R) we conclude that the Fourier transform

Ff(δ) = 1√
2π

∞∫

−∞

eiδsf(s)ds

maps isometrically L2(R+) onto the Hardy space H2(C+) and

FBu = δFu, FTf = δ − i
δ + i

Ff, u ∈ D(B), f ∈ L2(R+).

Let ψ ∈ H∞(C+) be an inner function. Then

ψ(B) = F−1ψ(δ)F (3.12)

is an isometric operator in L2(R+) which commutes with B [14, Section 5].

Lemma 3.2. The following are equivalent:

(i) a function q =
[
q1
q2

]
is non-cyclic for the backward shift operator T ∗,

(ii) there exists an inner function ψ ∈ H∞(C+) such that the subspace
H0 = ψ(B)L2(R+) of L2(R+) is orthogonal to at least one of the functions qi.

Proof. (i)⇒(ii) Since Eq = Eq1⊕Eq2 , the function q is non-cyclic if and only if at
least one of the functions qi∈L2(R+) is non-cyclic for the backward shift operator T ∗
in L2(R+). Let q ≡ qi be non-cyclic. Then the non-zero subspace

H0 = L2(R+)	 Eq

is invariant with respect to T . This means that FH0 is invariant with respect to
the multiplication by δ−i

δ+i in H2(C+). The Beurling theorem [22, p. 164] yields the
existence of an inner function ψ ∈ H∞(C+) such that FH0 = ψ(δ)H2(C+). Therefore

H0 = F−1ψ(δ)FL2(R+) = ψ(B)L2(R+).

By the construction, H0 is orthogonal to q (since, q belongs to Eq).
(ii)⇒(i) Let H0 = ψ(B)L2(R+) be orthogonal to q. Then6)

(ψ(B)f, T ∗nq)+ = (Tnψ(B)f, q)+ = (ψ(B)Tnf, q)+ = 0 for all f ∈ L2(R+).

Therefore, T ∗nq is orthogonal to H0. This means that Eq is orthogonal to H0. Therefore,
Eq is a proper subspace of L2(R+) and q is non-cyclic.

Theorem 3.3. If q is non-cyclic for T ∗, then there exists a simple maximal symmetric
operator B acting in a subspace H0 of L2(R+,C2) such that the operators Haq are
extensions of the symmetric operator B2 for all a ∈ C.

6) Here, (·, ·)+ is the scalar product in L2(R+).
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Proof. If q is non-cyclic, then at least one of qi is non-cyclic. Consider firstly the case
where the both of functions qi are non-cyclic. Due to the proof of Lemma 3.2, for each
qi there exists an inner function ψi such that the subspace ψi(B)L2(R+) is orthogonal
to qi. Denote

H0 =
[
ψ1(B)L2(R+)
ψ2(B)L2(R+)

]
= ψ(B)L2(R+,C2), (3.13)

where
ψ(B) =

[
ψ1(B) 0

0 ψ2(B)

]
(3.14)

is an isometric operator in L2(R+,C2) that commutes with B. This allows to define
a simple maximal symmetric operator in H0:

B = ψ(B)Bψ(B)∗, D(B) = ψ(B)D(B). (3.15)

Since ψ(B) commutes with B, the formula (3.15) can be rewritten as

Bu = Bu, u ∈ D(B) = ψ(B)D(B) = D(B) ∩ H0. (3.16)

(i.e., B is a part of B restricted on H0). In view of (3.10) and (3.16)

B2 = − d2

dx2 , D(B2) = {u ∈W 2
2 (R+,C2) ∩ H0 : u(0) = u′(0) = 0}. (3.17)

By Lemma 3.2 and (3.13), the subspace H0 is orthogonal to q. Hence, in view of
(3.2), (3.3), and (3.17), D(Haq) ⊃ D(B2) and

Haqu = −d
2u
dx2 = B2u for all u ∈ D(B2).

The case where only one qi is non-cyclic is considered similarly. For example, if q1 is
non-cyclic whereas q2 is cyclic (i.e., Eq2 = L2(R+)), then H0 and ψ(B) are determined
as above with ψ2 = 0.

Corollary 3.4. Assume that H = Haq is a positive self-adjoint operator. If q is
non-cyclic for T ∗, then the group W (t) of Cauchy problem solutions of (2.2) has
incoming/outgoing subspaces D± defined by (2.6), where B is from (3.16).
Proof. It follows from Theorems 2.1 and 3.3.

4. S-MATRIX FOR POSITIVE SELF-ADJOINT OPERATOR

In this section we suppose that Haq is a positive self-adjoint operator and the function
q is non-cyclic. By Theorem 3.3, Haq is an extension of the symmetric operator
B2 defined by (3.17) that acts in the subspace H0 = ψ(B)L2(R+,C2). In view of
Corollary 3.4 and Theorem 2.2, the S-matrix of Haq exists and is given by (2.10).
Our goal is to modify this general formula taking into account the specific choice of B
in (3.16).
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4.1. PRELIMINARIES

The following technical results are needed for the calculation of S-matrix.

Lemma 4.1. Let an isometric operator ψ(B) be defined by (3.12). Then

ψ(B)∗e−iµx = ψ(µ)e−iµx, µ ∈ C−.

Proof. It follows from (3.10) that B∗ = i ddx , D(B∗) = W 1
2 (R+). Therefore,

ker(B∗ − µI) = {ce−iµx : c ∈ C}.

This means that, for all u ∈ D(B),

((B−µI)u, ψ(B)∗e−iµx)+ = (ψ(B)(B−µI)u, e−iµx)+ = ((B−µI)ψ(B)u, e−iµx)+ = 0.

Hence ψ(B)∗e−iµx belongs to ker(B∗ − µI) and

(ψ(B)∗e−iµx, e−iµx)+ = c(e−iµx, e−iµx)+ = − c

2Im µ
. (4.1)

Using (3.12) and taking into account that FχR+(x)e−iµx = i√
2π ·

1
δ−µ , we verify that

the inner product

(ψ(B)∗e−iµx, e−iµx)+ = (e−iµx, ψ(B)e−iµx)+ = (FχR+(x)e−iµx, ψ(δ)FχR+(x)e−iµx)

is equal to 1
2π
∫∞
−∞

ψ(δ)
(Re µ−δ)2+(Im µ)2 dδ. The Poisson formula [24, p.147] and (4.1) lead

to the conclusion that

c = 1
π

∞∫

−∞

−(Im µ)ψ(δ)
(Re µ− δ)2 + (Im µ)2 dδ = ψ(Re µ− iIm µ) = ψ(µ)

that completes the proof.

Lemma 4.2. Let B and ψ(B) be defined by (3.15) and (3.14), respectively. Then,
for any µ ∈ C−,

ker(B∗2 − µ2I) = ker(B∗ − µI) = ψ(B)
{

hµ =
[
αµ
βµ

]
e−iµx : αµ, βµ ∈ C

}
.

Proof. The first identity follows from (2.5). It follows from (3.15) that

B∗ = ψ(B)B∗ψ(B)∗, D(B∗) = ψ(B)D(B∗) = ψ(B)W 1
2 (R+,C2). (4.2)

By virtue of (4.2) we conclude that ker(B∗ − µI) = ψ(B) ker(B∗ − µI). It follows
from the proof of Lemma 4.1 that ker(B∗ − µI) coincides with the set of vectors {hµ}
defined above.
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Corollary 4.3. Let ψ(B) be defined by (3.14). Then, for any µ ∈ C−,

ψ(B)∗e−iµx =
[
ψ1(µ)
ψ2(µ)

]
e−iµx, ψ(B)∗uµ =

[
c(µ, q1)
c(µ, q2)

]
e−iµx, (4.3)

where uµ is defined by (3.8) and

c(µ, qj) = ψj(µ) + 2(Im µ)((H∞ − µ2I)−1qj , ψj(B)e−iµx)+. (4.4)

Proof. The first relation in (4.3) follows from Lemma 4.1.
The function uµ in the second relation is an eigenfunction of the operator Hmax

(see Lemma 3.1). Since (C,Γ0,Γ1) defined by (3.4) is a boundary triplet of Hmax,
its adjoint H∗max coincides with the symmetric operator Hmin = Hmax �ker Γ0∩ker Γ1 .
Precisely,

Hmin = − d2

dx2 , D(Hmin) = {f ∈W 2
2 (R+,C2) : [f ]r = 0, 2[f ′]r = (f ,q)+}.

Comparing this formula with (3.17) leads to the conclusion that Hmin ⊃ B2, i.e., Hmin

is an extension of B2 with the exit into the space L2(R+,C2). Then, for f ∈ D(Hmax)
and u ∈ D(B2),

(PH0Hmaxf ,u)+ = (Hmaxf ,u)+ = (f ,Hminu)+ = (PH0f , B2u)+ = (B∗2PH0f ,u)+,

where PH0 is the orthogonal projection in L2(R+,C2) on the subspace H0 defined
by (3.13). The obtained relation means that

PH0Hmaxf = B∗2PH0f , for all f ∈ D(Hmax) = W 2
2 (R+,C2). (4.5)

Setting f = uµ in (4.5) and taking into account that Hmaxuµ = µ2uµ, we obtain
PH0Hmaxuµ = B∗2PH0uµ = µ2PH0uµ. This relation and (2.5) mean

PH0uµ ∈ ker(B∗2 − µ2I) = ker(B∗ − µI).

In view of Lemma 4.2, PH0uµ = ψ(B)hµ for some choice of hµ =
[
αµ
βµ

]
e−iµx or

ψ(B)ψ(B)∗uµ = ψ(B)hµ since PH0 = ψ(B)ψ(B)∗. Therefore ψ(B)∗uµ = hµ that leads
to the second relation in (4.3) with unspecified parameters αµ, βµ. Taking (3.8) into
account and arguing by the analogy with the determination of c in the proof of
Lemma 4.1 we arrive at the conclusion that αµ = c(µ, q1) and βµ = c(µ, q2), where
c(µ, qi) are defined in (4.4).

4.2. POSITIVE BOUNDARY TRIPLET

In view of Section 2.2, the S-matrix can not be constructed without finding the positive
boundary triplet (H,Γ0,Γ1) of B∗2. Since B is the restriction of the first derivative
operator B on H0, see (3.16), one can try to express (H,Γ0,Γ1) in terms of well-known
positive boundary triplet (H′,Γ′0,Γ′1) of B∗2.
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Lemma 4.4. The following relations hold:

H = ψ(B)H′, Γ0ψ(B) = ψ(B)Γ′0, Γ1ψ(B) = ψ(B)Γ′1.

Proof. It follows from (4.2) that

B∗2 = ψ(B)B∗2ψ(B)∗, D(B∗2) = ψ(B)D(B∗2) = ψ(B)W 2
2 (R+,C2). (4.6)

By definition H = ker(B∗2 + I) and H′ = ker(B∗2 + I). Using (4.6), we obtain

H = ker(B∗2 + I) = ψ(B) ker(B∗2 + I) = ψ(B)H′.
It follows from (3.15) and (4.2) that

B∗B = ψ(B)B∗Bψ(B)∗, D(B∗B) = ψ(B)D(B∗B). (4.7)

For brevity, we denote V = ψ(B) and consider f ∈ D(B∗2). Then f = u + h, where
u ∈ D(B∗B) and h ∈ H′. By virtue of (4.6), (4.7), V f ∈ D(B∗2) and V f = V u + V h,
where V u ∈ D(B∗B) and V h ∈ H. In view of (2.9), Γ0V f = V h = V Γ′0f .

Since H = VH′ and R(B2 + I) = VR(B2 + I), the orthogonal projectors
PH and PH′ are related as follows: V PH′ = PHV . Therefore,

Γ1V f = PH(B∗B + I)V u = PH(V B∗BV ∗ + I)V u = PHV (B∗B + I)u = V Γ′1f

that completes the proof.

Corollary 4.5. The positive boundary triplet (H,Γ0,Γ1) of B∗2 consists of the space

H = ψ(B)
{[

α
β

]
e−x : α, β ∈ C

}

and the mappings Γi : ψ(B)W 2
2 (R+,C2)→ H that are defined as follows:

Γ0ψ(B)f(x) = ψ(B)f(0)e−x, Γ1ψ(B)f(x) = 2ψ(B)[f ′(0) + f(0)]e−x.

Proof. It is well known (see, e.g., [12]) that the positive boundary triplet (H′,Γ′0,Γ′1)

of B∗2 has the form: H′ =
{[

α
β

]
e−x : α, β ∈ C

}
and

Γ′0f = f(0)e−x, Γ1f = 2[f ′(0) + f(0)]e−x, f ∈W 2
2 (R+,C2).

Applying Lemma 4.4 we complete the proof.

4.3. THE S-MATRIX FOR POSITIVE SELF-ADJOINT Haq

Theorem 4.6. The S-matrix for positive self-adjoint operator Haq has the form

S(z) =
[

Ψ1(z) 0
0 Ψ2(z)

]
− 2zi
a−W (z2)



c(z, q1)c(−z, q1) c(z, q1)c(−z, q2)

c(z, q2)c(−z, q1) c(z, q2)c(−z, q2)


 ,

(4.8)
where c(µ, qi) are determined by (4.4) and Ψj(z) are holomorphic continuations of the
functions ψj(−δ)/ψj(δ) (δ ∈ R) into C− such that |Ψj(z)| < 1 and Ψj(z) = Ψj(−z).
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Proof. By Theorem 2.2, for the calculation of S-matrix, one need to find operators
C(z) in (2.11). To do that we analyze vectors

u∈PH0(Haq − z2I)−1 ker(B∗ + zI)

in more detail. First of all we note that ker(B∗ + zI) = ψ(B){h−z} by Lemma 4.2.
Consider the equation7)

(Haq − z2I)f = (z2 − z2)ψ(B)h−z, z ∈ C− \ iR−. (4.9)

Its solution f ∈ D(Haq) is determined uniquely and

u = PH0f = (z2 − z2)PH0(Haq − z2I)−1ψ(B)h−z (4.10)

belongs to D(B∗2) due to (4.5). In view of (4.6), u = ψ(B)v, where v ∈W 2
2 (R+,C2)

and B∗2ψ(B)v = ψ(B)B∗2v. Moreover, since PH0 = ψ(B)ψ(B)∗, the relation (4.10)
yields

v = (z2 − z2)ψ(B)∗(Haq − z2I)−1ψ(B)h−z. (4.11)
Applying PH0 to the both parts of (4.9) and using (4.5) we obtain

(B∗2 − z2I)u = ψ(B)(B∗2 − z2I)v = (z2 − z2)ψ(B)h−z.

Therefore, (B∗2 − z2I)v = (− d2

dx2 − z2I)v = (z2 − z2)h−z. This means that

v = h−z + hz, u = ψ(B)v = ψ(B)h−z + ψ(B)hz, (4.12)

where hz ∈ ker(B∗ − zI) is determined uniquely by the choice of h−z. Applying
operators Γi from Corollary 4.5 we obtain

Γ0u = ψ(B)
[
α−z + αz
β−z + βz

]
e−x, Γ1u = 2ψ(B)

[
(1 + iz)α−z + (1− iz)αz
(1 + iz)β−z + (1− iz)βz

]
e−x.

Since dimH = 2, the function C(z) in Theorem 2.2 is 2 × 2-matrix-valued.
The substitution of Γiu into the characteristic relation (2.11) gives

2C(z)
[

(1 + iz)α−z + (1− iz)αz
(1 + iz)β−z + (1− iz)βz

]
=
[
α−z + αz
β−z + βz

]

and, after elementary transformations,

[I − 2(1− iz)C(z)]−1
[
α−z
β−z

]
= 1

2iRe z

[
(1 + iz)α−z + (1− iz)αz
(1 + iz)β−z + (1− iz)βz

]
. (4.13)

The substitution of (4.13) into (2.10) gives the S-matrix

S(z)
[
α−z
β−z

]
= −i Im z

Re z

[
α−z
β−z

]
− z

Re z

[
αz
βz

]
, z ∈ C− \ iR−. (4.14)

7) The coefficient (z2 − z2) is used for the simplification of formulas below.
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Here αz, βz are functions of parameters α−z, β−z ∈ C. Indeed, in view of (4.11)
and (4.12) hz = −h−z + (z2 − z2)ψ(B)∗(Haq − z2I)−1ψ(B)h−z and hence,
[
αz
βz

]
e−izx = (−I + (z2 − z2)ψ(B)∗(Haq − z2I)−1ψ(B))

[
α−z
β−z

]
eizx. (4.15)

The S-matrix S(z) depends on the choice of Haq. If Haq = H∞, then this
operator is a positive self-adjoint extension of the symmetric operators B2 and B2.
By Theorem 2.1 one can construct two pairs of subspaces D± that are determined
by B and B, respectively. Therefore, one can define two S-matrices S1(·) and S(·)
for H∞ corresponding to the cases where H∞ is considered as an extension of B2 or
an extension of B2. The both of S-matrices are defined by (2.10) but, in the first case,
C(z) = 0 and, therefore S1(z) = σ0. In view of [14, Proposition 3.1],

S(z) =
[

Ψ1(z) 0
0 Ψ2(z)

]
S1(z) =

[
Ψ1(z) 0

0 Ψ2(z)

]
, (4.16)

where Ψj(z) are holomorphic functions in C− such that |Ψj(z)| < 1 and
Ψj(z) = Ψj(−z). Moreover, the boundary values of Ψj(z) on R coincide
with ψj(−δ)/ψj(δ).

Due to (4.15), the coefficients αz, βz in (4.14) depend on the choice of Haq. The
resolvent formula (3.7) and (4.15) allow one to present αz = αz(Haq), βz = βz(Haq)
as the sum of αz(H∞), βz(H∞) and a function that is determined by the difference
between (Haq − z2I)−1 and (H∞ − z2I)−1 (see the second part in (3.7)). Such
decomposition and (4.16) allows one to rewrite (4.14):

S(z)
[
α−z
β−z

]
=
[

Ψ1(z)α−z
Ψ2(z)β−z

]
− zeizx

Re z
(z2 − z2) (h−z, ψ(B)∗u−z)+

a−W (z2) ψ(B)∗uz. (4.17)

In view of (4.3) with µ = −z

(z2 − z2)(h−z, ψ(B)∗u−z)+
Re z

= 2i
〈[

α−z
β−z

]
,

[
c(−z, q1)
c(−z, q2)

]〉
,

where 〈·, ·〉 is the inner product in C2. Substituting this expression into (4.17) and
using (4.3) with µ = z, we obtain

S(z)
[
α−z
β−z

]
=
[

Ψ1(z)α−z
Ψ2(z)β−z

]
− 2zi
a−W (z2)

〈[
α−z
β−z

]
,

[
c(−z, q1)
c(−z, q2)

]〉[
c(z, q1)
c(z, q2)

]
.

A rudimentary linear algebra exercise leads to the conclusion this formula for S(z)
can be rewritten as (4.8) for z ∈ C− \ iR−. Since the S-matrix is holomorphic in the
lower half-plain, the formula (4.8) remains true for C−.

The expression (4.8) is based on the Krein–Naimark resolvent formula (3.7) and it
allows one to establish various useful relationships between S-matrix and the opera-
tor Haq. An alternative formula for S-matrix in terms of reflection and transmission
coefficients is presented below.



428 Anna Główczyk and Sergiusz Kużel

By virtue of Lemma 4.1,

PH0

[
eizx

0

]
= ψ(B)ψ(B)∗

[
eizx

0

]
= ψ(B)

[
ψ1(−z)

0

]
eizx (4.18)

and, similarly, PH0

[
αz
βz

]
e−izx = ψ(B)

[
αzψ1(z)
βzψ2(z)

]
e−izx.

Setting h−z =
[
ψ1(−z)

0

]
eizx in (4.9) and using (4.18) we obtain

(Haq − z2I)f = (z2 − z2)ψ(B)h−z = (z2 − z2)PH0

[
eizx

0

]
, z ∈ C− \ iR−

and, in view of (4.10), (4.12), its solution f satisfies the relation

PH0f = ψ(B)
[
ψ1(−z)

0

]
eizx + ψ(B)

[
αz
βz

]
e−izx = PH0

[
eizx +R1

ze
−izx

T 1
z e
−izx

]
,

where
R1
z = αz

ψ1(z)
, T 1

z = βz

ψ2(z)
are called the reflection and the transmission coefficients, respectively.

Similarly, assuming h−z =
[

0
ψ2(−z)

]
eizx and considering the solution f of

(Haq − z2I)f = (z2 − z2)PH0

[
0
eizx

]
,

we obtain

PH0f = PH0

[
T 2
z e
−izx

eizx +R2
ze
−izx

]
, R2

z = βz

ψ2(z)
, T 2

z = αz

ψ1(z)
.

The reflection Rjz and the transmission T jz coefficients described above allow one
to obtain an alternative formula for S-matrix.
Theorem 4.7. The S-matrix of a positive self-adjoint operator Haq has the form

S(z) = −z
Re z

[
θ11(z)R1

z + i Im z
z θ12(z)T 2

z

θ21(z)T 1
z θ22(z)R2

z + i Im z
z

]
, θnm(z) = ψn(z)

ψm(−z)
.

(4.19)
Proof. Setting in (4.14)

α−z = ψ1(−z), β−z = 0, αz = ψ1(z)R1
z, βz = ψ2(z)T 1

z

and
α−z = 0, β−z = ψ2(−z), αz = ψ1(z)T 2

z , βz = ψ2(z)R2
z

we obtain a system of four linear equations with respect to unknowns coefficients of
the S-matrix S(z) =

[
s11 s12
s21 s22

]
. Its solution gives rise to (4.19) for all z ∈ C− \ iR−.

Since S(z) is holomorphic in C−, the formula (4.19) holds for all z ∈ C−.
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4.3.1. Example of ordinary δ-interaction
In view of (3.2), the ordinary δ-interaction corresponds to q = 0. The operators
Ha = Ha0 = − d2

dx2 have the domains:

D(Haq) = {f ∈W 2
2 (R+,C2) : [f ]s = 0, [f ′]r = a[f ]r}.

The function q = 0 is non-cyclic and one can set ψ1 = ψ2 = 1. Then PH0 = I and the
reflection and the transmission coefficients are determined as follows:

R1
z = R2

z = −a+ i(z − z)
a+ 2iz , T 1

z = T 2
z = 2iRe z

a+ 2iz .

Substituting the obtained expressions in (4.19) and taking into account that θnm(z) = 1,
we obtain a matrix-valued S-function

S(z) = 1
a+ 2iz

[
a −2iz

−2iz a

]
, (4.20)

which is holomorphic on C− for positive self-adjoint operators Ha (the positivity of
Ha is distinguished by the condition a ≥ 0).

The same formula (4.20) can be deduced from (4.8) if one take into account that
Ψj = 1 since ψj = 1 and W (z2) = −2iz, c(z, qj) = 1 by virtue of (3.9) and (4.4),
respectively.

5. OPERATORS Haq AND THEIR S-MATRICES

The example above leads to a natural assumption that the formulas (4.8), (4.19) allow
to construct a function S(z) for each operator Haq (assuming, of course, that q is
non-cyclic). We will call it the S-matrix of Haq. If Haq is positive self-adjoint, then
the S-matrix is the consequence of proper arguments of the Lax–Phillips theory and
it coincides with the analytical continuation of the Lax–Phillips scattering matrix
into C−. Otherwise, S(z) is defined directly by (4.8), (4.19) and it can be considered
as a characteristic function of Haq. In this section, we describe properties of Haq in
terms of the corresponding S-matrix.

It follows from (4.8) that a S-matrix of Haq is a meromorphic matrix-valued
function on C−. Its poles describe the point spectrum of Haq in C \ [0,∞).
Lemma 5.1. If z ∈ C− is a pole of S(z), then z2 belongs to the point spectrum
of Haq.
Proof. By virtue of (4.8), if z ∈ C− is a pole for S(z) then a = W (z2). This iden-
tity means that z2 ∈ σp(Haq) because Haq is defined by (3.5) and W (z2) is the
Weyl–Titchmarsh function associated to the boundary triplet (C,Γ0,Γ1) (see Section
3.1 and [26, Proposition 14.17]).

Remark 5.2. It may happen that the S-matrix ‘does not hear’ an eigenvalue z2. This
is the case where the corresponding eigenfunction uz is orthogonal to ψ(B)L2(R+,C2)
and, as a result, the coefficients c(z, qi) vanish, see Section 5.1.1.



430 Anna Główczyk and Sergiusz Kużel

Divide the half-plane C− into three parts

C−− = {z : Re z < 0}, C0
− = {z : Re z = 0}, C+

− = {z : Re z > 0}.
Lemma 5.3. If S(z) has a pole in C∓−, then S(z) has to be analytical on the opposite
part C±−. If S(z) has a pole on the middle part C0

−, then S(z) is analytical on C−−∪C+
−

and Haq is a self-adjoint operator.
Proof. Let z ∈ C−− be a pole for S(z). By virtue of (4.8), a = W (z2), where Im z2 > 0
and Im a > 0 since Im W (z2)/Im z2 > 0 [26, Section 14.5]. Similar arguments for
a pole z ∈ C+

− lead to the conclusion that Im a < 0. The obtained contradiction means
that the existence of a pole in C+

− (C−−) implies the absence of poles in C−− (C+
−).

If z ∈ C0
− is a pole, then Haq has a negative eigenvalue and Haq has to be

self-adjoint due to [21, Corollary 5.2].

An eigenvalue z2 ∈ C\ [0,∞) of Haq is called an exceptional point if its geometrical
multiplicity does not coincide with the algebraic one. The presence of an exceptional
point means that Haq cannot be self-adjoint for any choice of inner product. It follows
from Lemma 5.3 that an exceptional point z2 is necessarily non-real and z ∈ C−− ∪C+

−.

Lemma 5.4. A non-simple pole8) z of S(z) corresponds to an exceptional point z2

of Haq.
Proof. A non-simple pole z of S(z) means that the function (a − W (λ))−1 has
a non-simple pole for λ = z2. This yields that W ′(z2) = 0, where W ′(λ) = dW/dλ. In
view of [21, Theorem 5.4], an eigenvalue z2 of Haq is an exceptional point if and only
if W ′(z2) = 0.

Lemma 5.5. Let SHaq(z) be a S-matrix of Haq. Then

S∗Haq(z) = SHaq(−z) = SH∗aq(−z).
Proof. Using (4.8) for the calculation of the adjoint, we get

S∗Haq(z) =
[

Ψ1(z) 0
0 Ψ2(z)

]
+ 2zi
a−W (z2)



c(−z, q1)c(z, q1) c(−z, q1)c(z, q2)

c(−z, q2)c(z, q1) c(−z, q2)c(z, q2)


 .

In view of Theorem 4.6 Ψj(z) = Ψj(−z). Moreover, W (z2) = W ((−z)2). This
well-known property of the Weyl–Titchmarsh functions [26, Chap. 14] can easily be
derived from (3.9). Taking these facts into account and using (4.8) for the calculation
of SHaq(−z), we arrive at the conclusion that S∗Haq(z) = SHaq(−z). Now, to complete
the proof it suffices to remark that H∗aq = Haq due to (3.5) and [26, Lemma 14.6].

Corollary 5.6. Let S(z) be a S-matrix of Haq. Then Haq is self-adjoint if and only
if S∗(z) = S(−z).
Proof. If Haq is self-adjoint, then a ∈ R and S∗(z) = S(−z) due to Lemma 5.5.
Conversely, as follows from the proof above, the relation S∗(z) = S(−z) is possible
only in the case of real a. This implies the self-adjointness of Haq.

8) A pole of order greater then one.
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5.1. EXAMPLES

5.1.1. Even function q with finite support
We consider the simplest example of even function with finite support

q(x) = Mχ[−ρ,ρ](x), M ∈ C, ρ > 0.

In this case, Y q = q = M

[
χ[0,ρ](x)
χ[0,ρ](x)

]
.

Denote ψ(δ) = eiδρ. The function ψ belongs to H∞(C+) and the operator ψ(B)
in (3.12) acts in L2(R+) as follows:

ψ(B)f =
{
f(x− ρ) for x ≥ ρ,
0 for x < ρ.

(5.1)

Further, we extend the action of ψ(B) onto L2(R+,C2) assuming in (3.14) that
ψ1(B) = ψ2(B) = ψ(B). It follows from (5.1) that ψ(B)∗f = f(x+ ρ). Hence,

PH0f = ψ(B)ψ(B)∗f =
{

f(x) for x ≥ ρ,
0 for x < ρ.

(5.2)

The formula (5.2) and Lemma 3.2 imply that q is non-cyclic. Therefore, for Haq
there exists a S-matrix defined by (4.8). Let us specify the counterparts of (4.8).
First of all we note that Ψ1(z) = Ψ2(z) = e−2izρ as the holomorphic continuation of
e−2iδρ = ψ(−δ)

ψ(δ) into C−. Further, in view of (3.6),

(H∞ − µ2I)−1q = − M

2µ2 [(e−iµρ + eiµm(x) − 2)e−iµx + (e−iµm(x) − e−iµρ)eiµx],

where m(x) = min{x, ρ} and µ ∈ C−. This formula and (4.4) lead to the conclusion
that

c(µ, q1) = c(µ, q2) = e−iµρ
(

1− κµ
M

µ2

)
, κµ = 1− cosµρ.

Our next step is the calculation of W (z2) using formula (3.9) and the expression for
(H∞ − µ2I)−1, that gives

W (z2) = −2iz − 4Re M
iz

(1− e−izρ) + |M |
2

iz3
[
(e−izρ − 2)2 − 2izρ− 1

]
.

Substituting the expressions obtained above into (4.8) we find the S-matrix for Haq

S(z) = e−2izρ
(
σ0 −

2i(z2 − κzM)(z2 − κzM)
z3(a−W (z2))

[
1 1
1 1

])
.

Let us assume that z0 ∈ C− satisfies the relation z2
0 − κz0M = 0 and W ′(z2

0) 6= 0.
Set a = W (z2

0). Then the operator Haq has the eigenvalue z2
0 with eigenfunction uz0 .

It follows from (3.8) and the explicit expression for (H∞ − µ2I)−1 that

uz0 = 1− cos z0(ρ− x)
z2

0
q.
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In view of (5.2), the eigenfunction uz0 is orthogonal to H0 and it has no impact on
the S-matrix S(z) (no pole for z = z0).

5.1.2. Odd function q with finite support
Similarly to the previous case, we consider the odd function

q(x) = Msign(x)χ[−ρ,ρ](x), M ∈ C, ρ > 0.

In this case, q = M

[
χ[0,ρ](x)
−χ[0,ρ](x)

]
is non-cyclic and it is orthogonal to the same

subspace H0 = ψ(B)L2(R+,C2) as above. Further,

c(µ, q1) = e−iµρ
(

1− κµ
M

µ2

)
, c(µ, q2) = e−iµρ

(
1 + κµ

M

µ2

)

and W (z2) = −2iz + |M |2
iz3

[
(e−izρ − 2)2 − 2izρ− 1

]
. Then (4.8) takes the form

S(z) = e−2izρ

(
σ0 −

2zi
a−W (z2)

[
1− κz 2ReM

z2 + κ2
z
|M |2
z4 1− κz 2ImM

z2 − κ2
z
|M |2
z4

1 + κz
2ImM
z2 − κ2

z
|M |2
z4 1 + κz

2ReM
z2 + κ2

z
|M |2
z4

])
.

It is easy to see that the entries of the last matrix can not vanish simultaneously. This
means that z ∈ C− is a pole of S(z) if and only if a = W (z2). Therefore, in contrast
to Section 5.1.1, the poles of S(z) completely determine the point spectrum of Haq
in C \ R+.

5.1.3. Functions q with infinite support
The range of applicability of our results is not limited to operators Haq, where q = Y q
has finite support. Due to Lemma 3.2 and Theorem 3.3, the S-matrix (4.8) can be
constructed for an operator Haq when q is non-cyclic with respect to the backward
shift operator T ∗ in L2(R+,C2). Various examples of non-cyclic functions can be
found in [13,17]. Consider, for instance, the function q(x) = Pm(x)e−|x|, where Pm is
a polynomial of order m. Then

q =
[

Pm(x)
Pm(−x)

]
e−x, x ≥ 0.

Decompose the functions Pm(±x)e−x ∈ L2(R+):

e−xPm(x) =
m∑

n=0
cnqn(2x), e−xPm(−x) =

m∑

n=0
dnqn(2x), (5.3)

with respect to the orthonormal basis of the Laguerre functions

qn(x) = ex/2

n!
dn

dxn
(xne−x), n = 0, 1 . . .



On the S-matrix of Schrödinger operator with nonlocal δ-interaction 433

Using the relation Tqn(2x) = qn+1(2x) [3, p. 363], where T is defined by (3.11) and
taking (5.3) into account we arrive at the conclusion that q is orthogonal to the
subspace Tm+1L2(R+) = ψ(B)L2(R+), where ψ(δ) =

(
δ−i
δ+i

)m+1
belongs to H∞(C+).

Hence, q is a non-cyclic function and for operators Haq there exist S-matrices defined
by (4.8).

Let us calculate the S-matrix for the function q(x) = Me−|x|. In this case, one can
set m = 0, ψ(δ) = δ−i

δ+i , and Ψ1(z) = Ψ2(z) =
(
z+i
z−i

)2
as the holomorphic continuation

of ψ(−δ)
ψ(δ) =

(
δ+i
δ−i

)2
into C−. Further,

(H∞ − z2I)−1e−x = e−izx − e−x
1 + z2 , W (z2) = −2iz − 4Re M

1 + iz
+ |M |2

(1 + iz)2 .

It follows from (4.4) and the Poisson formula [24, p.147] that

c(µ, qi) = µ+ i

µ− i −
M

(µ− i)2 = µ2 + 1−M
(µ− i)2 .

After substitution of the expressions above into (4.8) and elementary transformations
we find

S(z) =
(
z + i

z − i

)2
(
σ0 −

2iz(1− M
z2+1 )(1− M

z2+1 )
a−W (z2)

[
1 1
1 1

])
.

Let us assume for the simplicity that M ∈ iR. Then

S(z) =
(
z + i

z − i

)2

σ0 −

2iz(1 + |M |2
(z2+1)2 )

a−W (z2)

[
1 1
1 1

]
 (5.4)

and W (λ) = −2i
√
λ+ |M |2

(1+i
√
λ)2 , where λ = z2 and

√
λ = z.

Since the first derivative of W (λ) is

W ′(λ) = − i√
λ

(
1 + |M |2

(1 + i
√
λ)3

)
,

the equation W ′(λ) = 0 have the following roots λj = z2
j , j ∈ {1, 2, 3}, where

z1 = −
√

3
2 |M |

2
3 + i(1− 1

2 |M |
2
3 ), z2 = −z1, z3 = i(|M | 23 + 1).

Assume that |M |2 > 8. Then z1, z2 ∈ C−. Denote a = W (z2
1). Then the S-matrix

(5.4) has a non-simple pole for z = z1 and, by Lemma 5.4, the operator Haq has
an exceptional point z2

1 . (The choice of z2 = −z1 instead of z1 leads to the conclusion
that the point z2

1 is exceptional for the adjoint operator H∗aq = Haq.)
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The obtained result shows that the existence of exceptional points for some
operators of the set {Haq}a∈C, where q(x) = Me−x, M ∈ iR depends on the absolute
value of the imaginary M . If |M |2 > 8, then there exist two operators Haq and
Haq with the exceptional points z2

1 and z2
1 , respectively. On the other hand, if |M |

is sufficiently small (|M |2 ≤ 8), then the collection of operators {Haq}a∈C has no
exceptional points.
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