PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of silymarin on thermooxidative degradation of PLA/PHB blends

Identyfikatory
Warianty tytułu
PL
Wpływ sylimaryny na proces degradacji termooksydacyjnej mieszanin PLA/PHB
Języki publikacji
EN
Abstrakty
EN
The effect of antioxidant of natural origin, i.e. silimarine on mechanical properties and thermooxidative degradation of biodegradable polylactide and polyhydroxybutyrate (PLA/PHB) blends obtained by melt mixing in a single-screw extruder (D = 25 mm, L/D = 24) was investigated. The addition of silymarin (0.7, 1.4 and 2.1 wt. %) improves the resistance to thermooxidative degradation of PLA/PHB blends, as evidenced by the value of the aging coeffi cient. Moreover, thanks to its unique properties, silymarin has a stabilizing effect and can be used as a pigment for polymers.
PL
Zbadano wpływ przeciwutleniacza pochodzenia naturalnego, tj. sylimaryny na właściwości mechaniczne oraz degradację termooksydacyjną biodegradowalnych mieszanin polilaktydu i polihydroksymaślanu (PLA/PHB). Mieszaniny otrzymano metodą mieszania w stanie stopionym przy użyciu wytłaczarki jednoślimakowej (D = 25 mm, L/D = 24). Dodatek (0,7; 1,4; 2,1% mas.) sylimariny poprawia odporność na degradację termooksydacyjną mieszanin PLA/PHB, o czym świadczy wartość współczynnika starzenia. Ponadto dzięki swoim wyjątkowym właściwościom sylimaryna ma działanie stabilizujące i może być stosowana jako barwnik do polimerów.
Rocznik
Strony
7--11
Opis fizyczny
Bibliogr. 28 poz., fig., tab.
Twórcy
autor
  • Institute of Polymer and Dye Technology, Lodz University of Technology, ul. Stefanowskiego 12/16, 90-924 Lodz
autor
  • Institute of Polymer and Dye Technology, Lodz University of Technology, ul. Stefanowskiego 12/16, 90-924 Lodz
Bibliografia
  • [1] Tsui A., Wright Z.C., Frank C.W.: Biodegradable polyesters from renewable resources. Annu. Rev. Chem. Biomol. Eng. 4 (2013) 143–70.
  • [2] Tokiwa Y., Calabia P.B.: Biodegradability and biodegradation of polyesters. J. Polym. Environ. 15 (2007) 259–267.
  • [3] Mochizuki M., Hirami M.: Structural effects on the biodegradation of aliphatic polyesters. Polym. Adv. Technol. 8 (1997) 203–209.
  • [4] Marten E., Müller R.J., Deckwer W.D.: Studies on the enzymatic hydrolysis of polyesters I. Low molecular mass model esters and aliphatic polyesters. Polym. Degrad. Stab. 80 (2003) 485–501.
  • [5] Kim M.N., Lee B.Y., Lee I.M., Lee H.S., Yoon J.S.: Toxicity and biodegradation of products from polyester hydrolysis. J. Environ. Sci. Heal. A. 36 (2001) 447–463.
  • [6] Seyednejad H., Ghassemi A.H., van Nostrum C.F., Vermonden T., Hennink W.E.: Functional aliphatic polyesters for biomedical and pharmaceutical applications. J. Control. Release 152 (2011) 168–176.
  • [7] Brannigan R.P., Dove A.P.: Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomater. Sci. 5 (2017) 9–21.
  • [8] Manavitehrani I., Fathi A., Badr H., Daly S., Shirazi A.N., Dehghani F.: Biomedical applications of biodegradable polyesters. Polymers 8 (2016) 20–52.
  • [9] Mangaraj S., Yadav A., Bal L.M., Dash S.K., Mahanti N.K: Application of biodegradable polymers in food packaging industry. A comprehensive review. Journal of Packaging Technology and Research 3 (2019) 77–96.
  • [10] Arrieta M.P., Samper M.D., Aldas M., López J.: On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10 (2017) 1008–1034.
  • [11] Siracusa V., Rocculi P., Romani S., Rosa M.D.: Biodegradable polymers for food packaging. A review. Trends Food. Sci. Tech. 19 (2008) 634–643.
  • [12] Arrieta M.P., del Mar Castro-Ló pez M., Rayó n E., Barral-Losada L.F., Ló pez-Vilariñ o J.M., Ló pez J., Gonzá lez-Rodríguez M.V.: Plasticized poly(lactic acid)−poly(hydroxybutyrate) (PLA−PHB) blends incorporated with catechin intended for active food-packaging applications. J. Agric. Food Chem. 62 (2014) 10170–10180.
  • [13] Lopes M.S., Jardini A.E., Filho R.M.: Synthesis and characterizations of poly(lactic acid) by ringopening polymerization for biomedical applications. Chemical Engineering Transactions 38 (2014) 331–336.
  • [14] Garlotta D.: A literature review of poly(lactic acid). J. Polym. Environ. 9 (2001) 63–84.
  • [15] Zhang M., Thomas N.L.: Blending polylactic acid with polyhydroxybutyrate. The effect on thermal, mechanical, and biodegradation properties. Adv. Polym. Tech. 30 (2011) 67–79.
  • [16] Yousif E., Haddad R.: Photodegradation and photostabilization of polymers, especially polystyrene. Review. Springer Plus 2 (2013) 398–430.
  • [17] Peterson J.D., Vyazovkin S., Wight C.A.: Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol. Chem. Phys. 202 (2001) 775–784.
  • [18] Gupta Y.N., Chakraborty A., Pandey G.D., Setua D.K.: Thermal and thermooxidative degradation of engineering thermoplastics and life estimation. J. Appl. Polym. Sci. 92 (2004) 1737–1748.
  • [19] Rasselet D., Ruellan A., Guinault A., Miquelar-Garnier G., Sollogoub C.: Oxidative degradation of polylactide (PLA) and its effects on physical and mechanical properties. Eur. Polym. J. 50 (2014) 109–16.
  • [20] Grassie N., Murray E.J., Holmes P.A.: The thermal degradation of poly(D)-β-hydroxybutyric acid. Part 1. Identification and quantitative analysis of products. Polym. Degrad. Stabil. 6 (1984) 47–61.
  • [21] Grassie N., Murray E.J., Holmes P.A.: The thermal degradation of poly(D)-β-hydroxybutyric acid. Part 2. Changes in molecular weight. Polym. Degrad. Stabil. 6 (1984) 95–103.
  • [22] Grassie N., Murray E.J., Holmes P.A.: The thermal degradation of poly(D)-β-hydroxybutyric acid. Part 3. The reaction mechanism. Polym. Degrad. Stabil. 6 (1984) 127–134.
  • [23] Surai P.F.: Silymarin as a natural antioxidant. An overview of the current evidence and perspectives. Antioxidants 4 (2015) 204–247.
  • [24] Comelli M.C., Mengs U., Prosdocimi M., Schneider C.: Toward the definition of the mechanism of action of silymarin. Activities related to cellular protection from toxic damage induced by chemotherapy. Integr. Cancer. Ther. 6 (2007) 120–129.
  • [25] Taleba A., Ahmada K.A., Ihsanb A.U., Qua J., Lina N., Hezamc K., Kojua N., Huia L., Qilong D.: Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed. Pharmacother. 102 (2018) 689–698.
  • [26] Dziemidkiewicz A., Maciejewska M., Pingot M.: Thermal analysis of halogenated rubber cured with a new cross-linking system. J. Therm. Anal. Calorim. 138 (2019) 4395–4405.
  • [27] Yahyaoui M., Gordobil O., Herrera Díaz R., Abderrabba M., Labidi J.: Development of novel antimicrobial films based on poly(lactic acid) and essential oils. React. Funct. Polym. 109 (2016) 1–8.
  • [28] Procházková D., Boušová I., Wilhelmová N.: Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82 (2011) 513–523.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5e022f5-3275-428a-b0e6-36f76939fd99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.