Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, we performed the qualitative analysis of exoproteins during granule formation in the presence or in the absence of cations. The staining of thin granule cryosections showed that nucleic acids, proteins, polysaccharides and calcium cations were the dominant components of the granules. Proteins are the structural components associated with calcium ions. We determined changes in the proteomic profile and tightly bound extracellular polymeric substances (EPS) of the slime. The exopolymeric matrix containing the proteins was extracted using the Dowex resin method. Proteomic profile was analysed by SDS-PAGE method (sodium dodecyl sulphate polyacrylamide gel electrophoresis) using Coomassie blue staining in the samples of the aerobic granule matrix formed in the presence of multivalent cations and compared with that of the aerobic granules cultivated without cations. The results indicate that the granule matrix is predominantly composed of large and complex proteins that are tightly bound within the granular structure. The tightly bound extracellular polymeric substances (TB-EPS) may play a role in improved mechanical stability of aerobic granules. In the supernatant fraction of the sludge, only a small amount of free proteins in the medium molecular mass range was detected. The protein with high molecular mass ( 116 kDa) produced in the reactors with added Ca2+. Ca2+ had a considerable regulatory influence on production of extracellular proteins during aerobic granulation.
Czasopismo
Rocznik
Tom
Strony
257–--266
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Department of Water Protection, Central Mining Institute, Pl. Gwarków 1, 40-166 Katowice, Poland
autor
- Silesian University of Technology, Faculty of Energy and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100 Gliwice, Poland
Bibliografia
- 1. Adav S.S., Lin J., Yang Z., Whiteley Ch.G., Lee D.J., Peng X.F., Zhang Z.P. 2010. Stereological assessment of extracellular polymeric substances, exo-enzymes, and specific bacterial strains in bioaggregates using fluorescence experiments. Biotechnol. Adv., 28, 255–280. DOI: 10.1016/j.biotechadv.2009.08.006.
- 2. Arrojo B., Mosquera-Corral A., Garrido J.M., Mendez R., 2004. Aerobic granulation with industrial wastewater in sequencing batch reactors. Wat. Res., 38, 3389–3399. DOI: 10.1016/j.watres.2004.05.002.
- 3. Chen C., Ming J., Yoza B.A., Liang J., Li Q.X., Guo H., Liu Z., Deng J., Wang, Q., 2019. Characterization of aerobic granular sludge used for the treatment of petroleum wastewater. Bioresour. Technol., 271, 353–359. DOI: 10.1016/j.biortech.2018.09.132.
- 4. Cheng M., Cook A.E., Fukushima T., Bond P.L., 2011. Evidence of compositional differences between the extra- cellular and intracellular DNA of a granular sludge biofilm. Lett. Appl. Microbiol., 53, 1–7. DOI: 10.1111/j.1472-765X.2011.03074.x.
- 5. Czaczyk K., 2004. Factors affecting the adhesion of microorganisms to solid surfaces. Advancements Microbiol.,43, 267–283.
- 6. Frolund B., Palmgren R., Keiding K., Nielsen P.H., 1996. Extraction of extracellular polymers formactivated sludge using a cation exchange resin. Wat. Res., 30, 1749–1758. DOI: 10.1016/0043-1354(95)00323-1.
- 7. Garnier C., Gorner T., Lartiges B.S., Abdelouhab S., de Donato P., 2005. Characterization of activated sludge exopolymers from various origins: a combined size-exclusion chromatography and infrared microscopy study. Wat. Res., 39, 3044–3054. DOI: 10.1016/j.watres.2005.05.007.
- 8. Hao W., Li Y., Lv J., Chen L., Zhu J., 2016. The biological effect of metal ions on the granulation of aerobic granular activated sludge. J. Environ. Sci., 44, 252–259. DOI: 10.1016/j.jes.2015.10.031.
- 9. Kończak B., Karcz J., Miksch K., 2014. Influence of calcium, magnesium, and iron ions on aerobic granulation. Appl. Biochem. Biotechnol., 174, 2910–2918. DOI: 10.1007/s12010-014-1236-0.
- 10. Laemmli U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. DOI: 10.1038/227680a0.
- 11. Li J., Ding L.B., Huang G.H., Horn H., 2014. Aerobic sludge granulation in a full-scale sequencing batch reactor. Biomed Res. Int., 2014, 268789. DOI: 10.1155/2014/268789.
- 12. Li Y., Li Z., Wang S., 2018. Analysis of characteristics extracellular polymeric substances extracted from aerobic granular sludge by different methods. IOP Conf. Ser.: Earth Environ. Sci., 199 (3), 032060. DOI: 10.1088/1755-1315/199/3/032060.
- 13. Ma J., Quan X., Li H., 2013. Application of high OLR-fed aerobic granules for the treatment of low-strengthwastew-ater: Performance, granule morphology and microbial community. J. Environ Sci., 25, 1549–56. DOI: 10.1016/S1001-0742(12)60243-5.
- 14. Manas A., Pocquet M., Biscands B., Seprandio M., 2012. Parameters influencing calcium phosphate precipitationin granular sludge sequencing batch reactor. Chem. Eng. Sci., 77, 165–175. DOI: 10.1016/J.CES.2012.01.009.
- 15. McSwain B.S., Irvine R.L., Hausner M., Wilderer P.A., 2005. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl. Environ. Microbiol., 71, 1051–1057. DOI: 10.1128/AEM.71.2.1051-1057.2005.
- 16. Miksch K., Kończak B., 2012. Distribution of extracellular polymeric substances and their role in aerobic granule formation. Chem. Process Eng., 33, 679–688. DOI: 10.2478/v10176-012-0057-3.
- 17. Morais I.L.H., Silva C.M., Zanuncio J.C., Zanuncio A.J.V., 2018. Structural stabilization of granular sludge by addition of calcium ions into aerobic bioreactors. BioRes., 13, 176–191. DOI: 10.15376/biores.13.1.176-191.
- 18. Morgenroth E., Sherden T., van Loosdrecht M.C.M., Heijnen J.J., Wilderer P.A., 1997. Aerobic granule sludge in a sequencing batch reactor. Wat. Res., 31, 3191–3194. DOI: 10.1016/S0043-1354(97)00216-9.
- 19. Nielsen P.H., Jahn A., Palmgren R., 1997. Conceptual model for production and composition of exopolymers in biofilms. Wat. Sci. Technol., 36, 11–19. DOI: 10.1016/S0273-1223(97)00318-1.
- 20. Patrauchan M.A., Sarkisova S., Sauer K., Franklin M.J., 2005. Calcium influences cellular and extracellular product formation during biofilm-associated growth of a marine Pseudoalteromonas sp. Microbiol., 151, 2885–97. DOI: 10.1099/mic.0.28041-0.
- 21. Sanchez L., 2001. TCA protein precipitation protocol. Available at: http://www.its.caltech.edu/~bjorker/TCA_ppt_protocol.pdf.
- 22. Vu B., Chen M., Crawford R.J., Ivanova E.P., 2009. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules, 14, 2535–2554. DOI: 10.3390/molecules14072535.
- 23. Xiong Y.H, Liu Y., 2012. Essential roles of eDNA and AI-2 in aerobic granulation in sequencing batch reactors operated at different settling times. Appl. Microbiol. Biotechnol., 93, 2645–2651. DOI: 10.1007/s00253-011-3565-z.
- 24. XuanW., Bin Z., Zhiqiang S., Zhigang Q., Zhaoli C., Min J., Junwen L., JingfengW., 2010. The EPS characteristics of sludge in an aerobic granule membrane bioreactor. Bioresour. Technol., 101, 8046–8050. DOI: 10.1016/j.biortech.2010.05.074.
- 25. Yu G.H., Yuang Y.C.H., Lee D.J., He P.J., Shao L.M., 2009. Enhanced aerobic granulation with extracellular polymeric substances (EPS)-free pellets. Bioresour. Technol., 100, 4611–4615. DOI: 10.1016/j.biortech.2009.04.050.
- 26. Yu H.U., Fang H.H.P., Tay J.H., 2000. Effects of Fe2+ on sludge granulation in upflow anaerobic sludge blanket reactors. Wat. Sci. Technol., 41 (12), 199–205. DOI: 10.2166/wst.2000.0271.
- 27. Zhang P., Shen Y., Guo J-S., Li Ch., Wang H., Chen Y-P., Yan P., Yang J-X., Fang, F., 2015. Extracellular protein analysis of activated sludge and their functions in wastewater treatment plant by shotgun proteomics. Sci. Rep., 5, 1–11. DOI: 10.1038/srep12041.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5cf2006-bc95-4f9d-b63e-8d8381573d2e