PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiological characterization of the phosphate deposit in Al-Jalamid phosphate mining area, Saudi Arabia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is a known fact that phosphate rocks have high levels of natural radioactivity due to the presence of large concentrations of radionuclides. This work aims to estimate radiation exposure and dose levels at Al-Jalamid site in northern Saudi Arabia. Al-Jalamid area is one of the largest reserves of phosphate worldwide. Ma’aden, a Saudi Government public company, owns the mine and is responsible for all mining activities. Phosphate and soil samples collected from Al-Jalamid phosphate mining area have been analysed for their uranium and thorium content by an α-spectrometer using radiochemical techniques. The quantity of radon gas was measured both in groundwater and in the atmosphere (indoor and outdoor) at the site using a portable radiation survey instrument. Groundwater samples collected from wells surrounding the mining area were analysed using a liquid scintillation counter in addition to an α-spectrometer. Finally, it is found that phosphate rock concentrate products cannot be utilized economically based on the standards set by the International Atomic Energy Agency (IAEA), since the average activity concentration does not reach the limit set by IAEA and hence are not commercially feasible.
Czasopismo
Rocznik
Strony
35--44
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
  • Center for Training & Radiation Prevention King Abdulaziz University P. O. Box 80204, Jeddah 21589, Saudi Arabia
  • Department of Nuclear Engineering Faculty of Engineering, King Abdulaziz University P. O. Box 80204, Jeddah 21589, Saudi Arabia
  • Center for Training & Radiation Prevention King Abdulaziz University P. O. Box 80204, Jeddah 21589, Saudi Arabia
  • Center for Training & Radiation Prevention King Abdulaziz University P. O. Box 80204, Jeddah 21589, Saudi Arabia
  • Department of Nuclear Engineering Faculty of Engineering, King Abdulaziz University P. O. Box 80204, Jeddah 21589, Saudi Arabia
  • Department of Nuclear Engineering Faculty of Engineering King Abdulaziz University P. O. Box 80204, Jeddah 21589, Saudi Arabia
  • Department of Nuclear Engineering Faculty of Engineering King Abdulaziz University P. O. Box 80204, Jeddah 21589, Saudi Arabia
Bibliografia
  • 1. Diammonium phosphate (DAP) production from Saudi Arabian phosphate deposits. (2003). Materials World, 11(5), 23–24. Retrieved from https://www.azom.com/article.aspx?ArticleID=2083.
  • 2. Atta, E. R., Zakaria, K. M., & Ibrahim M. S. (2016).Assessment of the heavy metals and natural radioactivity in phosphate mines and occupational health effects at some Egyptian regions. J. Environ. Prot.(Irvine,. Calif)., 7(11), 1657–1669.
  • 3. Sahu, S. K., Ajmal, P. Y., Bhangare, R. C., Tiwari, M., & Pandit, G. G. (2014). Natural radioactivity assessment of a phosphate fertilizer plant area. J. Radiat.Res. Appl. Sci., 7(1), 123–128.
  • 4. Tufail, M., Akhtar, N., & Waqas, M. (2006). Radioactive rock phosphate: the feed stock of phosphate fertilizers used in Pakistan. Health Phys., 90(4), 361–370.
  • 5. Fávaro, D. I. T. (2005). Natural radioactivity in phosphate rock, phosphogypsum and phosphate fertilizers in Brazil. J. Radioanal. Nucl. Chem., 264(2),445–448.
  • 6. Azouazi, M., Ouahidi, Y., Fakhi, S., Andres, Y., Abbe,. C., & Benmansour, M. (2001). Natural radioactivity in phosphates, phosphogypsum and natural waters in Morocco. J. Environ. Radioact., 54(2), 231–242.
  • 7. Papastefanou, C. (2001). Radiological impact from atmospheric releases of 238U and 226Ra from phosphate rock processing plants. J. Environ. Radioact., 54(1), 75–83.
  • 8. Banzi, F. P., Kifanga, L. D., & Bundala, F. M. (2000). Natural radioactivity and radiation exposure at the Minjingu phosphate mine in Tanzania. J. Radiol. Prot., 20(1), 41–51.
  • 9. Menzel, R. G. (1968). Uranium, radium, and thorium content in phosphate rocks and their possible radiation hazard. J. Agric. Food Chem., 16(2), 231–234.
  • 10. Zapata, F. & Roy, R. N. (Eds.). (2004). Use of phosphate rocks for sustainable agriculture. Rome: FAO/IAEA. (FAO Fertilizer and Plant Nutrition Bulletin no. 13). Available from http://www.fao.org/3/y5053e/y5053e00.htm#Contents.
  • 11. Komura, K., Yanagisawa, M., Sakurai, J., & Sakanoue, M. (1985). Uranium, thorium and potassium contents and radioactive equilibrium states of the uranium and thorium series nuclides in phosphate rocks and phosphate fertilizers. Radioisotopes, 34(10), 529–36. https://doi.org/10.3769/radioisotopes.34.10_529.
  • 12. Mustonen, R. (1985). Radioactivity of fertilizers in Finland. Sci. Total Environ., 45, 127–134.
  • 13. Guimond, R. J. (1990). Radon in fertilizers. In The environmental behaviour of radium (Vol. 2, pp. 113–128). Vienna: International Atomic Energy Agency (Technical Reports Series no. 310). Available from https://inis.iaea.org/collection/NCLCollectionStore/_Public/21/052/21052628.pdf?r1&r1.
  • 14. Pfi ster, H., Philipp, G., & Pauly, H. (1976). Population dose from natural radionuclides in phosphate fertilizers. Radiat. Environ. Biophys., 13(3), 247–261.
  • 15. Sam, A., & Holm, E. (1995). The natural radioactivity in phosphate deposits from Sudan. Sci. Total Environ., 162(2/3), 173–178.
  • 16. International Atomic Energy Agency. (1979). Gammaray surveys in uranium exploration. Vienna: IAEA. (Technical Report Series no. 186). Available from https://inis.iaea.org/collection/NCLCollectionStore/_Public/10/454/10454955.pdf?r=1&r=1.
  • 17. Kennedy, R. H. (1967). Recovery of uranium from low-grade sandstone ores and phosphate rock. In Processing of low-grade uranium ores (pp. 216–226).Vienna: IAEA. Available from https://www-pub.iaea.org/MTCD/Publications/PDF/Pub146_web.pdf.
  • 18. Hassan, N. M., Mansour, N. A., Fayez-Hassan, M., & Sedqy, E. (2015). Assessment of natural radioactivity in fertilizers and phosphate ores in Egypt. J. Taibah Univ. Sci., 10(2), 296–306.
  • 19. Guimond, R. J., & Hardin, J. M. (1989). Radioactivity released from phosphate-containing fertilizers and from gypsum. Int. J. Radiat. Appl. Instrum. Part CRadiat. Phys. Chem., 34(2), 309–315.
  • 20. Al Zahrani, J. H., Alharbi, W. R., & Abbady, A. G. E. (2011). Radiological impacts of natural radioactivity and heat generation by radioactive decay of phosphorite deposits from northwestern Saudi Arabia. Australian Journal of Basic and Applied Sciences, 5(6), 683–690.
  • 21. Shabana, A. A., Banoqitah, E. I., Qutub, E. M., Tayeb, M. M. T., & Kinsara, M. S. (2019). Evaluation of radiation hazards due to mining activities in Al Jalamid mining area, North Province, Saudi Arabia. Arab. J. Sci. Eng., 44, 8799–8804. https://doi.org/10.1007/s13369-019-03840-8.
  • 22. Wallace, C. A., Dini, S. M., & Al-Farasani, A. A.(2003). Geologic map of the Hazm Al Jalamid Quadrangle, Sheet 31D, and part of the Markaz ‘Anazah quadrangle, Sheet 32D with explanatory notes. Saudi Geological Survey.
  • 23. Shabana, E. I., & Al-Hobaib, A. S. (1999). Activity concentrations of natural radium, thorium and uranium isotopes in ground water of two different regions. Radiochim. Acta, 87(1/2), 41–45.
  • 24. International Atomic Energy Agency. (2004). Analytical Quality Control Services (AQCS), reference materials catalogue. Vienna: IAEA.
  • 25. Makweba, M. M., & Holm, E. (1993). The natural radioactivity of the rock phosphates, phosphatic products and their environmental implications. Sci.Total Environ., 133(1/2), 99–110.
  • 26. UNSCEAR. (1982). Ionizing radiation: sources and biological effects. UNSCEAR 1982 Report. US Scientifi c Committee on the Effects of Atomic Radiation.Available from https://www.unscear.org/unscear/en/publications/1982.html.
  • 27. UNSCEAR. (2000). Sources and effects of ionizingradiation. UNSCEAR 2000 Report. Vol. 1. UN Scientifi c Committee on the Effects of Atomic Radiation.Available from https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf.
  • 28. Olszewska-Wasiolek, M. (1995). Estimates of the occupational radiological hazard in the phosphate fertilizers industry in Poland. Radiat. Prot. Dosim.,58, 269–276.
  • 29. El-Taher, A., & Makhluf, S. (2010). Natural radioactivity levels in phosphate fertilizer and its environmental implications in assuit governorate, upperEgypt. Indian J. Pure Appl. Phys., 48(10), 697–702.
  • 30. Khater, A. E. M., Higgy, R., & Pimpl, M. (2001).Radiological impacts of natural radioactivity in Abu-Tartor phosphate deposits, Egypt. J. Environ.Radioact., 55(3), 255–267.
  • 31. Sam, A. K., Ahamed, M. M. O., El Khangi, F. A., El Nigumi, Y. O., & Holm, E. (1999). Radiological and chemical assessment of Uro and Kurun rock phosphates. J. Environ. Radioact., 42(1), 65–75.
  • 32. Scholten, L. C., & Timmermans, C. W. M. (1996). Natural radioactivity in phosphate fertilizers. Fertil. Res., 43(1/3), 103–107.
  • 33. Da Conceição, F. T., & Bonotto, D. M. (2006). Radionuclides, heavy metals and fl uorine incidence at Tapira phosphate rocks, Brazil, and their industrial (by) products. Environ. Pollut., 139(2), 232–243.
  • 34. Khan, K., Khan, H. M., Tufail, M., Khatibeh, A. J. A. H., & Ahmad, N. (1998). Radiometric analysis of Hazara phosphate rock and fertilizers in Pakistan. J. Environ. Radioact., 38(1), 77–84.
  • 35. Shabana, E. -S. I., Banoqitah, E. M., Qutub, M. M. T., Tayeb, M. S., & Kinsara, A. A. (2019). Evaluation of radiation hazards due to mining activities in Al. Jalamid mining area, North Province, Saudi Arabia. Arab. J. Sci. Eng.,. 44, 8799–8804.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5cdefe1-cb79-4603-a69c-4f97250d9cf4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.