
�	
���������������
������	�
�����������������������
���	�������	����	����������
����	�������������!

1. Introduction

In the mid-1980s, along with the development of personal com-
puters, the continuous increase in available computing power
and subsequent generations of programming languages, the
AML (Algebraic Modeling Languages) class of languages ari-
sed. It facilitated the process of creating optimization problem
models and solving them [9]. AMPL is among the pioneers of
this type of software [8], together with other languages, e.g.,
GAMS or AIMMS.

Today, in addition to specialized optimization modeling
tools, there are also libraries and packages for general pro-
gramming languages, e.g., Pyomo for Python or JuMP for
Julia, playing the role of optimization modeling languages.

The aim of this work is a comparative study of three popular
optimization modeling languages and their capabilities: AMPL,
Pyomo and JuMP. The study consists of implementing in these
three languages and solving in their environments a shortest
path in a directed graph problem formulated in linear program-
ming (LP) terms. The assessment of the listed environments
was made taking into account various criteria, such as: ava-
ilability of specific constructs for given problem classes (e.g.,
arcs in graph/network problems), ways to define constraints
and objective functions, declarations and operations on input
data sets, as well as convenience and effectiveness of implemen-
tation, expressed, for example, through the size of the code.

�����
&��
������-/��Q

.�%�
	��M��8�����$�.�M��8�����'������	%����

����&�0
�
�
�#�%���
��%	������)*�!*�+!+)���$���
������%��%�����!S�!S�+!+)���

����������	����%���E�."6I$�6�������%�?�"6�
#�����
������"�%	���(�I��(��(�������T	������
I��	���6��(������(�6��8�	��GP����	
Andrzej Karbowski, Krzysztof Wyskiel
A����������	�������E�H	������(�$�;��������E�G�	�����������%�0�E���������H	������(�$�T�����	�����)<@)>$�!!=**<�A���
���

Abstract: The purpose of this work is a comparative study of three languages (environments)
of optimization modeling: AMPL, Pyomo and JuMP. The comparison will be based on three
implementations of the shortest path problem formulated as a linear programming problem.
The codes for individual models and differences between them will be presented and discussed.
Various aspects will be taken into account, such as: simplicity and intuitiveness of implementation,
availability of specific data structures for a LP network problems, etc.

9
�%����Q
������
�����$���%	���(����(��(�$����(������($������	�����������8�	�$���	���������8�	��$����	������(������(

S<
=.

�.���
��
���.
��
�
���
��
�
����.

problem

The problem presented in this section is one of the best known
and widely described (discrete) optimization problems in the
literature. There are many types of graph problems; from them
looking for the shortest path between two indicated nodes in
a directed graph was selected, because it can be easily formu-
lated as a (continuous) linear programming problem, that is
in the most standard way.

The mathematical model of the shortest path problem is
as follows [7]:

∑
∈Aji

jijix
xc

),(
,,min

subject to

(1)

xi,j � 0, ∀(i, j) ∈ A

A graph is represented here as a set N of nodes and a set A of
edges. Each edge is represented by a pair of nodes (i, j) ∈ A, i, j ∈ N
(beginning and end of the link). A transition cost (distance) ci;j is
assigned to each edge. The decision variable x defines a path in
the graph in such a way, that each xi;j equals 1 if the edge (i, j)
belongs to the path and 0 otherwise. The start node of the path
is marked as s and the terminal node as t.

T<
"�����#�����
���
	���
	������
�

This section will briefly discuss the basic features of subsequent
optimization modeling environments, the installation process,
and how to prepare them for work.

23

Pomiary Automatyka Robotyka, ISSN 1427-9126, R. 25, Nr 3/2021, 23–30, DOI: 10.14313/PAR_241/23

3.1. AMPL
AMPL (A Mathematical Programming Language) is the oldest
optimization programming language among those discussed
here, which has been developed since 1985 [8]. The AMPL pac-
kage is commercial software, but there is also a free variant for
academic purposes. This program has a fully functional, inte-
grated development environment amplide, which includes a file
explorer, a console for various language commands, related to
loading, solving or displaying the model, and a text editor, in
which we can create and edit the models and input data files.

This language is created from the beginning and does not
depend on any external libraries, thanks to which it has a simple
and clear syntax. It offers constructs for parameters, sets, varia-
bles, objective functions and constraints. It also supports more
complex constructs for sets, that are useful, e.g., in graph pro-
blems. The model itself is saved in files with the .mod extension.
In addition, AMPL has .dat files in which we can save input data
for the model, according to the imposed syntax.

And finally, there are also .run files, that we can optionally
use to write scripts involving, e.g., decomposed or even parallel
optimization [10]. Usually we place in them instructions neces-
sary to solve the model, i.e. loading a file with the model, a file
with input data, choosing a solver, an optional list of parameters
transferred to the solver and a command to call it.

T<S<
�����
Pyomo (Python Optimization Modeling Objects) is a collec-
tion of packages for the general purpose programming language
Python [4, 5]. It provides tools and constructs needed to build
models, declare variables, sets, solver interfaces, etc. The first
version of Pyomo appeared in 2008; since then it has been con-
stantly developed and maintained. The recommended by the
authors method of exploitation is to use Pyomo together with
one of the available scientific Python distributions. For this
purpose, we can use for example Anaconda platform, available
for download at https://www.anaconda.com/download/. The
package includes also Spyder, an IDE for writing scripts and
programs in Python and testing them in the embedded console.

As mentioned at the beginning, Pyomo is a collection of
Python libraries. There are some constraints and dependencies.
The syntax for functions and constructs offered must be compa-
tible with the native language, which also forces a certain style
of code writing, e.g., the use of appropriate indentation in con-
ditional statement blocks or loops. On the other hand, we can
also use Python methods. Modeling elements include parame-
ters, sets, variables, objective functions, constraints, as well as
expressions, which we can use e.g., to divide long mathematical
operations into smaller elements to increase readability. We save
the model in standard Python files with the .py extension. We
have also .tab files with one or more parameters useful for long
arrays. In addition, we have the ability to read data from csv,
Json, xml, yaml, Excel and some relational databases. For the
last three of them, however, additional Python libraries, that
are not a part of Pyomo, are necessary.

3.3. JuMP
JuMP (Julia for Mathematical Programming) is a library
for the fairly young language Julia (similarly to Pyomo for
Python) [2, 3]. It is the youngest environment to create opti-
mization models among those described here. The first version
of Julia appeared in 2012, while the JuMP prototype was rele-
ased in 2015 [2]. There are several versions of Julia’s distribu-
tion. The recommended package is JuliaPRO, which we can
download from https://juliacomputing.com/products/juliapro.
It contains many different libraries including JuMP and CLP
solver, so we can start work immediately after installation. It

is available in a personal (free) and licensed for enterprises
version. The package also includes the Juno IDE based on the
Atom text editor.

Due to the fact that JuMP is a library for the Julia language,
there are some dependencies and constraints associated with it.
The syntax of the functions and constructs offered by the pac-
kage must be compatible with the native language. This also
applies to our style of writing program code, e.g., terminating
blocks of conditional statements and loops with the keyword
end. However, this also allows us to use Julia’s native methods,
including vector and matrix operations, which can often be use-
ful. JuMP offers constructs for variables, constraints, objective
functions and Affine expressions, which consist of three fields:
coefficient vector, variable vector and constant.

Unlike the other languages discussed here, we don’t have defi-
ned constructs for parameters and sets in JuMP. However, due
to the rich set of mathematical functions offered by Julia, this
is generally not a problem. JuMP also lacks an interface for
loading data from files, which requires to use native language
methods (as in Pyomo). On the other hand, it gives us the fre-
edom to define and adopt a layout convenient for us in the files
with model input data.

T<U<
����	��	

��	�
��
���
�.
��
��

All these languages have appropriate interfaces for communi-
cation with various solvers. The list of available solvers is quite
large and includes both commercial (such as Cplex or Gurobi)
and free (such as Ipopt or Cbc). In JuMP, we need an additio-
nal interface written in Julia to communicate with the solver.
This is due to the fact that, unlike the other languages discus-
sed here, JuMP does not generate files with the model in an
appropriate format (e.g., .nl in AMPL), which are then transfer-
red to the solver, but communicates with it directly in memory.

The way the environment is prepared varies slightly in each
case. In AMPL to use a given solver we write the following com-
mand:

option solver “name”;

where for “name” we substitute the name of the solver’s exe-
cutable file.

In Pyomo, we create the object for communication with the
solver as follows:

solverFactory(“name”)

where, similarly to AMPL, we write the name of the solver’s
executable file.

JuMP can boast about the simplest solution. In Julia’s con-
sole, it is enough to type Pkg.add("solver name"). In the
case of a free solver, its source files will be downloaded along
with the appropriate Julia interface, compiled and prepared for
use. In the case of commercial solvers, we must have a working
installation with an active license (in this case only the interface
is downloaded). Then we import the appropriate package with
the solver interface in the program code by the using command
and we pass the constructor for this interface to the method
responsible for the initialization of the model object, e.g.,

Model(solver = name())

where for “name” we substitute the name of the constructor
method for the given interface.

24

Comparative study of AMPL, Pyomo and JuMP optimization modeling languages on a network linear programming problem...

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 3/2021

U<
=.

�.���
��
���.
��
�
���
��
�
����.

h
���	
�
�������

This section will describe three implementations of the shortest path pro-
blem in a directed graph in all environments discussed in the paper. Each
subsection will deal with the program code in a given modeling language.
The obtained results will be described and compared in a separate section.
In every case, the Cbc solver was used to solve this problem.

The naming of variables in different environments is consistent as far
as possible. Where there are any additional variables that are not present
in the others, they will be described in the subsection on a specific imple-
mentation.

Common variable names:
 − nodes – set of graph nodes,
 − arcs – set of graph edges,
 − x – decision variable designating the edges used in the path,
 − cost – vector containing the cost of transition (length) of the graph edge,
 − source – starting node,
 − target – end node.

4.1. AMPL
The implementation of this problem in AMPL looks like this:

Listing 1. The shortest path in a directed graph – implementation in AMPL
Listing 1. Najkrótsza scieżka w grafie skierowanym – implementacja w AMPLu

All commands or constructs must end with a semicolon. Basic elements
such as parameters are easily defined using the appropriate keyword and
name. In AMPL we have the ability to create sets using the set keyword,
which can be used, among others, for indexing. We also have a dedicated
construct for graph edges. The within keyword defines the range of values
that elements of this particular set can take. Next, in braces we specify
NODES cross NODES, which means that each item in the set ARCS is descri-
bed by two values, each of which falls in the set NODES.

Parameters are defined using the keyword param. We can also impose
that they can take text values from a specific set using symbolic in. Array
parameters are defined by specifying the appropriate index expression of
the form {i in NODES }, {(i, j) in ARCS } after the name in braces, or
a set, as in the case of the parameter COST. Values of all parameters inde-
xed or not (except for those that use the expression symbolic) can also be
limited from below or above by inequality signs, as seen in the above code.

Listing 2. Sample .dat file in AMPL
Listing 2. Przykładowy plik .dat w AMPLu

Both sets and parameters can be given values
in the model file (which is usually inadvisable)
or in a dedicated file which will be described in
a moment.

We can declare variables for our model using the
keyword var. The rules for indexing and limiting
from the bottom/top are the same as for para-
meters.

The objective function is given according to the
following format:

minimize | maximize any_name: expression

and similarly for constraints:

subject to any_name optionally_indices:
expression

where we can also specify optionally indices while
creating an indexed constraint. We build expres-
sions for the objective function and constraints
using simple notation close to natural, mathema-
tical syntax. The sum function allows us to sum
vector elements, matrices or various expressions.
We provide indices for the sum in a similar way as
described earlier. As we can see, in the constraint
we can also easily use the expression if-then-
-else to define the values for the sum difference,
depending on the current node in the index, so we
don’t have to build several separate constraints,
and the whole expression is very similar to that of
the mathematical model. It should be remembe-
red that "=" is an equality operator, and ":=" is
absent in this model.

In order to load data into the model, the data
command is used in conjunction with the name
of the data file, which can be given in quota-
tion marks or not. AMPL uses files with the .dat
extension in which we define parameter and set
values. For the above problem it looks like this:

Finally, to solve the model, we need to provide
the appropriate solver using the option solver
command, simply giving its name. Then we solve
the model with the solve command. After suc-
cessful solution, using the display function, we
can specify any model elements whose values we
want to check, separated by commas. An intere-
sting option is omit_zero_rows, which allows us to
display vector, matrix, etc. variables while skipping
lines with the value zero.

25

Andrzej Karbowski, Krzysztof Wyskiel

Listing 3. Shortest path in a directed graph – implementation in Pyomo
Listing 3. Najkrótsza ścieżka w grafie skierowanym – implementacja w Pyomo

U<S<
�����
The implementation of this problem in Pyomo looks like this:

Pyomo, as mentioned earlier, is a set of libraries for the high-level
programming language Python. There are some restrictions, rules and
writing style requirements imposed by the native language. Commands
and expressions do not end with any special semicolon character, their
end is determined by the end of line in which they are located. However,
if an expression is too long and we want to move it to the next line, we
can use the “\” (backslash) character. In Python, indents (tabs) in the
code are extremely important and required for the proper operation of
each program. Therefore, when writing method definitions, conditional
statements or loops, we must ensure appropriate spacing in accordance
with the language specification. On the one hand, this ensures consi-
stency and readability of the code, which is an important aspect, but on
the other hand, it limits the programmer in some way.

To use Pyomo in our code, we need to import the appropriate libra-
ries, what is shown at the beginning of the above code. We import all
classes from a given package using the “star”. Because objectivity is one
of Python’s paradigms, the model in Pyomo is an example of an object
to which subsequent elements are closely related. We call it to life using
the AbstractModel() method, which creates an empty model to which
elements added later are not fully constructed, even giving them initial
values (the construction is carried out in two stages).

The principle of adding variables, parameters and other elements is the
same – using the model object, we enter the name we choose after the dot
and assign the object with a specific element to it by calling the appro-
priate method and, if required, providing the appropriate parameters.

The Set() method allows us to create sets. We also have a dedicated
construct for graph arcs. We add to the previously mentioned method the
keyword (named) argument within with the value m.nodes * m.nodes,

which means that every element of the set
arcs will be described by two numbers, each
of which must fit in the set nodes (similar
to AMPL). We add parameters to the model
using the Param() method. By specifying the
within argument, we can (similarly to sets)
request that the value of this element belong
to the indicated set or to other parameter.
We create an indexed parameter by simply
specifying the file after which the element is
to be indexed (as in the case of cost).

We create variables using the Var()
method. Indexing rules are the same as for
parameters. To specify the lower/upper limit,
we can also use one of several identifiers of
predefined constants for the within argu-
ment. In the example above, NonNegative-
Reals simply means greater than or equal to
zero. We use Objective() and Constraint()
for the objective function and constraints.
In both cases, there is the rule argument
that takes the name of a specific, previously
defined method. We create the one using the
keyword def, the name and a list of argu-
ments given after the comma in brackets
(distance_rule and constraint1_rule).
In the objective function, we additionally
specify minimize or maximize in the sense
argument if we want to search for the mini-
mum or maximum of a function, respectively.

The first argument of a _rule type method
is always the model object (which we created
at the beginning with the AbstractModel()
method). The next, optional, argument is
an indexed component (e.g., set), or more
precisely, a specific element of this set. In
the body of the method we define, we must
use the keyword return, and then provide
a mathematical expression that defines a con-
straint or an objective function.

Having all components of a model we may
solve it. To do this, we “build” it by calling
the create_instance method, in which we
give the name of the data file as an argument.
Then we get a new object (hereinafter refer-
red to as the instance). Pyomo uses, among
others, .dat files that have the same, AMPL
equivalent, syntax (Listing 2), which allows
us to use the same file in both environments.
However, there is a slight difference. We can-
not separate (e.g., for reading convenience)
elements of sets and parameters with com-
mas. This file will not be loaded by Pyomo.
The next step is to create an object that is
a “shell” for communication with a solver
using the SolverFactory() method, in which
we give the name of the solver as an argu-
ment. All that remains is to call the solve
method on the opt object, giving the instance
we created earlier. This method returns only
basic data regarding the problem solved by
the solver (among others, the number of
variables, constraints and status). To view
the values of the objective function, con-
straints, etc., we need to call the display()
method on the instance object.

26

Comparative study of AMPL, Pyomo and JuMP optimization modeling languages on a network linear programming problem...

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 3/2021

Listing 4. The shortest path in a directed graph – implementation in JuMP
Listing 4. Najkrótsza ścieżka w grafie skierowanym - implementacja w JuMP

4.3. JuMP
The implementation of this problem in JuMP looks like this:

JuMP, as mentioned at the beginning of the paper, is a set of libraries for
the high-level programming language Julia. As in the case of Pyomo, there
are some restrictions, rules and writing style requirements imposed by the
native language. Commands and expressions do not end with any special
semicolon character, their end is designated by the end of the line in which
they appear. If any expression is too long and we want to partially move it
to the next line, we just do it, it does not require adding specific characters
or keywords. However, we can use the “\” character. The recommended way
is to enclose such an expression in parentheses. Unlike Python, the indenta-
tion in the code we write does not affect its operation and only serves for our
convenience and readability.

To use JuMP in our program, we must import the library containing it
using the keyword using. The same applies to the package containing the
solver interface that we want to use. One of Julia’s paradigms is objectivity,
hence the model in JuMP is presented as an object, which we then supplement
with further elements that are closely related to it (not all, however, about
which in a moment). We create our main object using the Model() method.
As in Python, there are so-called keyword arguments. What is characteristic
for JuMP, when creating a model, we must specify the method initiating the
Julia interface for a given solver in the solver argument.

Unlike the other modeling languages described here, JuMP has no con-
structs for sets or parameters. For this we need to use the standard constructs
offered by Julia (which are, fortunately, simple and comfortable), which some-

what spoils the idea of the model as an object
keeping in itself all the components belonging
to it. Therefore, if we would like to use some
constructs for indexing, we must immediately
initialize them with appropriate values.

JuMP does not offer methods for loading data
from files – here we must again use the func-
tions offered by the native language. The sim-
plest solution was the readdlm() method, in
which we give as arguments the file name, cha-
racter (or string) separating subsequent num-
bers (or words) and the third optional parameter
– the type of data contained in the file. Ente-
ring the last parameter (Int32 – 32-bit integer)
was necessary, because by default the loaded
numbers were saved in the program memory
as floating point numbers (while there sho-
uld be integers here). As in Python, we dec-
lare variables/objects by providing a name. The
downloaded data was saved in the data varia-
ble. The size(data) method returns a two-
-element vector with, in order, the number of
rows and the number of columns. Specifying
index 1 in square brackets, we extract the num-
ber of rows (indexing of tables in Julia begins
with one) and reducing by 1 we get the num-
ber of edges (numOfEdges). We read the num-
ber of nodes N from the loaded matrix. The
set (array) nodes is created by a simple expres-
sion with a for loop, giving i for i in 1: N
in square brackets, which generates subsequent
values of i in the range 1: N.

There are no graph constructs in JuMP,
either. However, we can easily deal with this by
creating the arc structure (the keyword for the
construct is immutable or type, but the first of
them is recommended, due to the speed of filling
the arrays). Inside, we only have the start node
startNode and the end node endNode. Struc-
ture, function, conditional statement, etc. defi-
nitions must end in Julia with the keyword end.
Next, we create a set of edges arcs by reading
from the data object pairs of nodes from subse-
quent rows of data. The vector cost is created
as a dictionary using the method Dict(), in
which we give the label (here a single edge) as an
argument, operator =>, the value and finally an
analogous expression with a loop for as before.

Variables can be created by the @variable()
method. The first argument is always the model
object, while the second argument is the variable
expression. Specifying x[arcs] creates a varia-
ble indexed with the elements of the vector
arcs. In addition, we can specify the lower limit
(as in the above code), upper limit (in the same
way) or both. In the last case it would be e.g.,
0 <= x[arcs] <= 1. For this the @objective()
method is responsible for the objective function, in
which we enter the model object, Min or Max and
a mathematical expression. In the function sum()
we give what we add (m.x[a]), after which indices
(for a in m.arcs) and optional condition for the
index using the keyword if (similarly to Pyomo).

We create constraints using the @constraint()
method, where we give the model object and
a mathematical expression (analogous rules as
before for indexing, sums, etc.).

27

Andrzej Karbowski, Krzysztof Wyskiel

Finally, there remains the solution to the problem by cal-
ling the solve() method, to which we pass the object with
the model. After finishing, only a short status is returned, e.g.,
“Optimal”, if an optimal solution has been found. The values
of the objective function, decision variables, etc. are saved in
the model object. Using print(), we can print specific items
in the console. To get the value of the objective function from
the model, we use getobjectivevalue() (entered in the model
argument), and for variables, getvalue() (here we enter only
the variable name). In defining string objects in Julia, we can
use the expression $() to “inject” some numerical value from the
indicated object, or even the result of a mathematical operation.

5. Tests

We used the GTGraph program to generate test graphs [6, 1].
According to the description of the mathematical model, the
generated graph is a set of edges, where each edge is described
by three consecutive values: the starting node, the end node
and the cost of the transition (distance). Values for all three
edge components are positive integers. The graph used to test
the implemented models is below. The graph in graphic form
is in the Fig. 1.

1 8 37 4 2 21 7 3 29

1 10 10 4 10 36 8 7 33

2 4 17 5 3 27 8 4 31

2 10 12 5 2 40 9 6 10

3 1 15 5 8 40 9 5 36

3 10 37 6 2 37 9 3 22

3 2 33 6 4 25 9 2 35

3 6 36 6 5 13 9 7 18

3 9 31 7 9 10 10 8 13

4 5 10 7 6 11 10 4 14

For all implementations of the models discussed in this sec-
tion, the results were the same. They are presented in the
Table 1. There are many more (90 exactly) possible pairs of
nodes between which paths can be drawn, but among them
there will be many which have the lengths of one or two edges.

Fig. 1. Test graph
Rys. 1. Graf testowy

28

Comparative study of AMPL, Pyomo and JuMP optimization modeling languages on a network linear programming problem...

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 3/2021

Table 1. Results for the shortest path problem in the directed graph
Tabela 1. Wyniki dla zadania najkrótszej ścieżki w grafie skierowanym

Start node, Terminal node The optimal path Path length

(1, 6) 1, 10 ,8, 7, 6 67

(4, 8) 4, 2, 10, 8 46

(2, 9) 2, 10, 8, 7, 9 68

(10, 9) 10, 8, 7, 9 56

(8, 10) 8, 4, 2, 10 64

(10, 1) 10, 4, 5, 3, 1 66

6. Conclusions

The AMPL, Pyomo and JuMP environments presented in
this paper proved to be effective tools for optimization mode-
ling. We must remember that Pyomo is embedded in Python
and JuMP in Julia and there are some limitations and code
style requirements to write codes compatible with the native
languages. AMPL, as a language dedicated to optimization
modeling, does not have such a problem, thanks to which the
constructs in AMPL are simpler, which translates into easier
and more convenient implementation of models. It also provi-
des the shortest code of all the environments discussed here. In
terms of the number of characters and lines we need to write,
the implementation in JuMP is the worst. Pyomo is between
the two. Despite the lack of constructs for parameters and
sets in JuMP and Pyomo one can successfully use the stan-
dard functionalities offered by Julia and Python languages.
The creation of mathematical expressions was comfortable and
quite intuitive in all the environments presented. JuMP and,
more specifically, Julia, offer built-in operations on vectors and

arrays (including even vector methods), which are missing in
AMPL, and in Python are offered by external libraries.

People who do not have everyday contact with object-oriented
programming languages or programming at all will certainly find
their way in the field of optimization modeling using AMPL. In
contrast, users familiar with object-oriented programming, sho-
uld not have big problems using Pyomo and JuMP.

Based on this work, we can conclude that AMPL, although it
is a comfortable environment with many possibilities and wins
in many places, is not the best in all aspects.

References

1. GTgraph Program.
www.cse.psu.edu/~kxm85/software/GTgraph.

2. JuMP documentation. www.juliaopt.org/JuMP.jl/0.18/
index.html.

3. JuMPa GitHub Repository. https://github.com/JuliaOpt/
JuMP.jl.

4. Pyomo documentation.
https://pyomo.readthedocs.io/en/latest/.

5. Pyomo GitHub Repository. https://github.com/Pyomo/
pyomo.

6. Bader D.A., Madduri K., GTgraph: A Synthetic Graph
Generator Suite. College of Computing, Georgia Institute
of Technology, 2006.

7. Bertsekas D.P., Linear Network Optimization. MIT Press,
1991.

8. Fourer R., Gay D.M., Kernighan B.W., AMPL A Modeling
Language for Mathematical Programming, Second Edition.
Duxbury, Thomson, 2003.

9. River Logic, Inc., Optimization Modeling: Everything You
Need to Know, www.riverlogic.com/blog/optimization-
modeling-everything-you-need-to-know, 2021.

10. Olszak A., Karbowski A., Parampl: A Simple Tool for Par-
allel and Distributed Execution of AMPL Programs. “IEEE
Access”, Vol. 6, 2018, 49282–49291,
DOI: 10.1109/ACCESS.2018.2868222.

Streszczenie: Celem pracy jest zbadanie i porównanie możliwości trzech języków (środowisk)
modelowania optymalizacyjnego: AMPL, Pyomo i JuMP. Porównanie zostanie oparte na trzech
implementacjach zadania najkrótszej ścieżki sformułowanego jako zadanie programowania liniowego.
Przedstawione i omówione zostaną kody poszczególnych modeli oraz różnice między nimi. Pod
uwagę będą brane różne aspekty, takie jak: prostota i intuicyjność implementacji, dostępność
określonych struktur danych dla problemów z siecią LP itp.

*�
�������	
�
Q���������
����$���
������%	�������$�
�%���	������F��
	��
��	Z��$�
�%�������	����	$����(��������	�������	$�
�%�����(��E��	

���%�������F�����
	���
��F����%	����������������
�����	(��
."6I$�6�������?�"6������
����%
�	�������	(��
�%�����
���(������������	����	(�

29

Andrzej Karbowski, Krzysztof Wyskiel

Andrzej Karbowski, PhD, DSc
.�M��8�����'������	%����
ORCID: 0000-0002-8162-1575

.�%�
	��M��8������ � �	�	��	%�6�J� K)>>!L���%�
��8���������� K+!)+L� ��� .��������� �������� ��%�
9�8������E�����A����������	�������E�H	����=
��(�$� ;������� �E� G�	��������� ��%� 0�E���������
H	������(�������	������	��������������������E	�=
���������	�0�������	��E�����������%�������������
G�(��		���(��E�A����������	�������E�H	����=
��(����%����T.�M�T��������9	�	�����0�������	����A�������
Q	������	�	%�������%���	���=��������E�����8�����K���������	����%�%�����8��	%�
��������(L$����	����������%���	���=��������E�����	=8�����K���(��%������=
���(���%����������������������	���L$���	�	%������E�����	���������	��E���	�NG�	�=
(�	�O���������KN"�P	%=0��	(��I��	�����%�T�����	���6��(������(�"	���%��
E���G�	�(��.���	�H��EE�������������������������T	���������%�����%�OL�����%�
��	����������	��)<!�����������%����E	�	��	����	����Q����	�	��������	�	����
����	�����	�������������������$�"06���%�"0TI6��	���%�$��	�	�(�=����	�
%�����	�����������(�	��$���8	��	������$� �%	��������������%�������	��
����	�	���������E�������
��������(�������������������	�������	��$�����=
��	�����%�����%��

Krzysztof Wyskiel, BSc
�������	�'��������������
ORCID: 0000-0001-6851-9755

M�
��
��E�A����	���������"������%	����E�����=
���	�����	��	������	�;��������E�G�	�����������%�
0�E���������H	������(���E���	�A����������	�=
������E�H	������(��

30

Comparative study of AMPL, Pyomo and JuMP optimization modeling languages on a network linear programming problem...

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 3/2021

