Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The quantitative description of an airlift bioreactor, in which aerobic biodegradation limited by carbonaceous substrate and oxygen dissolved in a liquid takes place, is presented. This process is described by the double-substrate kinetics. Mathematical models based on the assumption of plug flow and dispersion flow of liquid through the riser and the downcomer in the reactor were proposed. Calculations were performed for two representative hydrodynamic regimes of reactor operation, i.e. with the presence of gas bubbles only within the riser and for complete gas circulation. The analysis aimed at how the choice of a mathematical model of the process would enable detecting the theoretical occurrence of oxygen deficiency in the airlift reactor. It was demonstrated that the simplification of numerical calculations by assuming the “plug flow” model instead of dispersion with high Péclet numbers posed a risk of improper evaluation of the presence of oxygen deficiency zones. Conclusions related to apparatus modelling and process design were drawn on the basis of the results obtained. The paper is a continuation of an earlier publication (Grzywacz, 2012a) where an analysis of single-substrate models of the airlift reactor was presented.
Czasopismo
Rocznik
Tom
Strony
3--19
Opis fizyczny
Bibliogr. 24 poz., il.
Twórcy
autor
- Cracow University of Technology, Department of Chemical and Process Engineering, ul. Warszawska 24, 31-155 Cracow, Poland
Bibliografia
- 1. Bales V., Antosova M., 1999.Mathematical and experimental modelling of phenol degradation in air-lift bioreactors. Environ. Eng. Policy., 1, 209–216. DOI: 10.1007/s 100220050024.
- 2. Behin J., 2010. Modeling of modified airlift loop reactor with a concentric double-draft tube. Chem. Eng. Res. Des., 88, 919–927. DOI: 10.1016/j.cherd.2010.01.004.
- 3. Boyadjiev Ch., 2006. On the modeling of an airlift reactor.Int. J. Heat Mass Transfer, 49, 2053–2057. DOI: 10.1016/ j.ijheatmasstransfer.2006.01.015.
- 4. Camarasa E., Carvalho E., Meleiro L.A.C., Maciel Filhob R., Domingues A., Wild G., Poncin S., Midoux N., Bouillard J., 2001. Development of a complete model for an air-lift reactor. Chem. Eng. Sci., 56, 493–502. DOI: 10.1016/S0009-2509(00)00253-0.
- 5. Chisti Y., 1989. Airlift bioreactors. Elsevier, London.
- 6. Gavrilescu M., Tudose R.Z, 1998. Concentric-tube airlift bioreactors. Part I: Effects of geometry on gas holdup. Bioproc. Eng., 19, 37–44. DOI: 10.1007/s004490050480.
- 7. Grzywacz R., 2003. The methods of the determining the steady-states of an airlift bioreactor for selected hydrodynamic structures of the liquid phase. Inż. Chem. Proc., 24, 567–587.
- 8. Grzywacz R., 2008. Experimental verification of hydrodynamic models for airlift reactor. Technical Journal – Mechanics. Cracow University of Technology, (105) M–5, 151–158.
- 9. Grzywacz R., 2009. Influence of construction and process parameters on gas holdup coefficient in downcomer of airlift reactor. Inż. Ap. Chem., 48, 76–78.
- 10. Grzywacz R., 2012a. Continuous mathematical models of airlift bioreactors: Families, affinity, diversity and modelling for single-substrate kinetics. Chem. Process Eng., 33, 291–309. DOI: 10.2478/v10176-012-0027-9.
- 11. Grzywacz R., 2012b. Steady-state properties of airlift bioreactors. Wydawnictwo PK, Kraków.
- 12. Kanai T., Ichikawa J., Yoshikawa H., Kawase Y., 2000. Dynamic modeling and simulation of continuous airlift bioreactors. Bioproc. Eng., 23, 213–220. DOI: 10.1007/s004499900154.
- 13. Kanai T., Uzumaki T., Kawase Y., 1996. Simulation of airlift bioreactors: steady-state performance of continuous culture processes. Comp. Chem. Eng., 20, 1089–1099. DOI: 10.1016/0098-1354(95)00225-1.
- 14. Korpijarvi J., Oinas P., Reunanen J., 1999. Hydrodynamics and mass transfer in an airlift reactor. Chem. Eng. Sci., 54, 2255–2262. DOI: 10.1016/S0009-2509(98)00439-4.
- 15. Merchuk J.C., Stein Y., 1980. Distributed parameter model of an airlift fermentor. Biotechnol. Bioeng., 22, 1189– 1211. DOI: 10.1002/bit.260220607.
- 16. Sanchez A., Ceron Garcia C., Garcia Camacho F., Molina Grima E., Chisti Y., 2004. Mixing in bubble column and airlift reactors. Chem. Eng. Res. Des., 82, 1367–1374. DOI: 10.1205/cerd.82.10.1367.46742.
- 17. Seker S., Beyenal H., Salih B., Tanyolac A., 1997. Multi-substrate growth kinetics of pseudomonas putida for phenol removal. Appl. Microbial. Biotechnol., 47, 610-614. DOI: 10.1007/s002530050982.
- 18. Sikula I., Markoš J., 2008. Modeling of enzymatic reaction in an airlift reactor using an axial dispersion model. Chem. Pap. - Chem. Zvesti, 62, 10–17. DOI: 10.2478/sl1696-007-0073-9.
- 19. Stamou A., 1997. Modelling of oxidation ditches using an open channel flow 1-D advection-dispersion equation and ASM1 process description. Wat. Sci. Tech., 36/5, 269–276. DOI: 10.1016/S0273-1223(97)00483-6.
- 20. Tabiś B., Grzywacz R., 2011. Numerical and technological properties of bubble column bioreactors for aerobic processes. Comp. Chem. Eng., 35, 212–219. DOI: 10.1016/j.compchemeng.2010.03.015.
- 21. Towell G., Ackerman G., 1972. Axial mixing of liquid and gas in large bubble reactors. Proceedings of the 5th European/ 2nd International Symposium Chemical Reactor Engineering, Amsterdam. B3 1–13.
- 22. Vial Ch., Poncin S., Wild G., Midoux N., 2001. A simple method for regime identification and flow characterization in bubble columns and airlift reactors. Chem. Eng. Proc., 40, 135–151. DOI: 10.1016/S0255-2701(00)00133-1.
- 23. Wisecarver K., Fan L., 1989. Biological phenol degradation in a gas-liquid-solid fluidized bed reactor. Biotech. Bioeng., 33, 1029–1038. DOI: 10.1002/bit.260330812.
- 24. Znad H., Báleš V., Markoš J., Kawase Y., 2004. Modeling and simulation of airlift bioreactors. Biochem. Eng. Journal., 21, 73–81. DOI: 10.1016/j.bej.2004.05.005.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5c26693-d2fc-44f5-8735-21c31e29e401