PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrical resistivity imaging and 3D geological modelling of the sedimentary architecture of the Sanaga foodplain (Cameroon, Central Africa)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The sedimentary architecture of the Middle Sanaga deposits in the Central Cameroon Region was studied by combining sedimentological and surface geoelectrical techniques. Lithologic columns from hand augers and pits were correlated to geoelectrical profiles. All of these data were analysed to determine the volumes of lithological units that constitute significant potential geomaterial deposits (gravels, sands, and clays). From surface to depth, geoelectrical results show four main units: conductive GU1 (100 Ωm), semi-resistive GU2 (800 Ωm), resistive UG3 (1000–2000 Ωm), and highly resistive GU4 (over 2000 Ωm). The calibration results identify three lithological units: LU1 composed of poorly sorted pebbles and gravels; LU2 consisting of well-classified medium to coarse sands, asymmetry towards fine to coarse elements; and LU3 consisting of silty clays and clayey sands. Correlation of results assigns UG1 and LU3 to low hydrodynamics, GU2 and LU2 to medium hydrodynamics, and GU3 with LU1 to high hydrodynamics. A 3D filling model has been developed. This model shows that the volume of GU1-LU3 is estimated of 33,549,496 m3 , for GU2-LU2 is estimated of 18,352,728 m3 , and of GU3-LU1 of 7,687,875m3 . This study has important implications for the knowledge and characterization of lithological units, especially geomaterials.
Czasopismo
Rocznik
Strony
735--755
Opis fizyczny
Bibliogr. 78 poz.
Twórcy
  • Department of Earth Sciences, Faculty of Science, University of Yaoundé I, PO box 812, Yaoundé, Cameroon
  • Department of Earth Sciences, Faculty of Science, University of Yaoundé I, PO box 812, Yaoundé, Cameroon
  • Department of Earth Sciences, Faculty of Science, University of Yaoundé I, PO box 812, Yaoundé, Cameroon
  • Department of Earth Sciences, Faculty of Science, University of Yaoundé I, PO box 812, Yaoundé, Cameroon
  • Department of Earth Sciences, Faculty of Science, University of Yaoundé I, PO box 812, Yaoundé, Cameroon
  • Department of Earth Sciences, Faculty of Science, University of Yaoundé I, PO box 812, Yaoundé, Cameroon
Bibliografia
  • 1. Alamry AS, Meijde M, Noomen M, Addink EA, Benthem RV, Jong SM (2017) Spatial and temporal monitoring of soil moisture using surface electrical resistivity tomography in Mediterranean soils. CATENA 157:388–396. https://doi.org/10.1016/j.catena.2017.06.001
  • 2. Anchuela OP, Garbi ALHG, Pérez A, Soriano MA (2014) Combination of electromagnetic, geophysical methods and sedimentological studies for the development of 3D models in alluvial sediments affected by karst (Ebro Basin, NE Spain). J Appl Geophys 102:81–95
  • 3. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Petrol Trans AIME 146:54–62
  • 4. Bábek O, Sedláček J, Novák A, Létal A (2018) Electrical resistivity imaging of anastomosing river subsurface stratigraphy and possible controls of fluvial style change in a graben-like basin. Czech Republic, Geomorphology. https://doi.org/10.1016/j.geomorph.2018.05.012
  • 5. Bendixen M, Overeem I, Rosing MT, Bjørk AA, Kjær KH, Kroon A, Zeitz G, Iversen LL (2019) Promises and perils of sand exploitation in Greenland. Nat Sustain 2:98–104
  • 6. Bersezio R, Giudici M, Mele M (2007) Combining sedimentological and geophysical data for high resolution 3-D mapping of fluvial architectural elements in the Quaternary Po plain (Italy). Sedimentary Geol 202:230–248
  • 7. Bhattacharya F, Shukla AD, Patel RC, Rastogi BK, Juyal N (2017) Sedimentology, geochemistry and OSL dating of the alluvial succession in the northern Gujarat alluvial plain (western India)—a record to evaluate the sensitivity of a semiarid fluvial system to the climatic and tectonic forcing since the late Marine Isotopic Stage 3: Geomorphology. https://doi.org/10.1016/j.geomorph.2017.08.046.
  • 8. Colella A, Lapenna V, Rizzo E (2004) High-resolution imaging of the High Agri Valley Basin (Southern Italy) with electrical resistivity tomography. Tectonophysics 386:29–40. http://refhub.elsevier.com/s0037-9120(13)00138-3/rf0025
  • 9. deGroot-Hedlin C, Constable S (1990) Occan’s inversion to generate smooth twodimensional models from magnetotelluric data. Geophysics 55(12):1613–1624
  • 10. Deleplancque B, Cojan I, Beucher H, Mehl C, Stab O (2018) Spatial and temporal patterns of the upper Pleistocene alluvial fill deposits of the upstream Seine River alluvial plain, la Bassée, France. Geomorphology 18:30236–30238. https://doi.org/10.1016/j.geomorph.2018.06.005
  • 11. Dietrich P, Ghienne JFF, Normandeau A, Lajeunesse P (2017) Reconstructing ice-marginretreat using delta morphostratigraphy. Sci Rep 7:16936
  • 12. Dong M, Neukum C, Hu H, Azzam R (2015) Real 3D geotechnical modeling in engineering geology: a case study from the inner city of Aachen, Germany. Bull Eng Geol Environ 74:281–300
  • 13. El May M, Dlala M, Chenini I (2010) Urban geological mapping: geotechnical data analysis for rational development planning. Eng Geol 116:129–138
  • 14. Elangwe HN (1979) Carte géologique de la république Unie du Cameroun. 1: 1000000. Minister of mines and power.
  • 15. Elenga H, Maley J, Vincens A, Farrera I (2004) Palaeoenvironments, palaeoclimates and landscape development in Atlantic equatorial Africa: a review of key sites covering the last 25 ka. In: Battarbee RW, Gasse F, Stickley CE (eds) Past climate variability through Europe and Africa. Springer, Cham, pp 181–198p
  • 16. Erikson ML, Yager RM, Kauffman LJ, Wilson JT (2019) Drinking water quality in the glacial aquifer system, northern USA. Sci Total Environ 694:133735
  • 17. Evans DJA, Hiemstra JF, Cofaigh CO (2012) Stratigraphic architecture and sedimentology of a Late Pleistocene subaqueous moraine complex, southwest Ireland. J Quat Sci 27:51–63
  • 18. Fatahi Nafchi R, Yaghoobi P, Reaisi Vanani H, Ostad-Ali-Askari K, Nouri J, Maghsoudlou B (2021) Eco-hydrologic stability zonation of dams and power plants using the combined models of SMCE and CEQUALW2. Appl Water Sci 11(109):7. https://doi.org/10.1007/s13201-021-01427-z
  • 19. Feeney CJ, Chiverrell RC, Smith HG, Hooke JM, Cooper JR (2020) Modelling the decadal dynamics of reach-scale river channel evolution and floodplain turnover in CAESAR-Lisflood.
  • 20. Flemming BWA (2000) Revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Continental Shelf Res 20:1125–1137
  • 21. Folk RL (1968) Petrology of the sedimentary rocks. Hemphill Publishing Company, Austin, Texas. http://refhub.elsevier.com/S1367-9120(17)30388-7/h0120
  • 22. Gasse F, Chalié F, Vincens A, Williams MAJ, Williamson D (2008) Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quater Sci Rev 27:2316–2340p
  • 23. Gazel J, Hourcq V, Nickles M (1956) Carte géologique du Cameroun à 1/1000000, 2 feuilles avec notice explicative. Bull. Dir. Mine et Géol, Cameroun, 262p. Granit 1. Des Dossiers d’Argile, 509p.
  • 24. Golian M, Katibet H, Singh VP, Ostad-Ali-Askari K, Rostami HT (2020) Prediction of tunnelling impact on flow rates of adjacent extraction water wells. Quart J Eng Geol Hydrogeol 53:236–251. https://doi.org/10.1144/qjegh2019-055
  • 25. Gourry JC, Vermeersch F, Garcin M, Giot D (2003) Contribution of geophysics to the study of alluvial deposits: a case study in the Val d’Avaray area of the river Loire, France. J Appl Geophys 54:35–49
  • 26. Grassi S, Imposa S, De Guidi G, Patti G, Brighenti F, Carnemolla F (2022) 3D subsoil reconstruction of a mud volcano in central Sicily by means of geophysical surveys. Acta Geophys 70:1083–1102. https://doi.org/10.1007/s11600-022-00774-y
  • 27. Javadinejad S, Eslamian S, Ostad-Ali-Askari K (2021) The analysis of the most important climatic parameters affecting performance of crop variability in a changing climate. Int J Hydrol Sci Technol 11(1):1–25
  • 28. Kankeu B, Greiling RO, Nzenti JP, Ganno S, Danguene PY, Bassahak J, Hell JV (2018) Contrasting Pan-African structural styles at the NW margin of the Congo Shield in Cameroon. J Afr Earth Sci 146:28–47
  • 29. Krassakis P, Pyrgaki K, Gemeni V, Roumpos C, Louloudis G, Koukouzas N (2022) GIS-based subsurface analysis and 3D geological modeling as a tool for combined conventional mining and in-situ coal conversion: the case of kardia lignite mine, Western Greece. Mining 2(2):297–314
  • 30. Kurjanski B, Rea BR, Spagnolo M, Cornwell DG, Howell J, Comte JC, Quiros AG, Palmu JP, Oien RP, Gibbard PL (2021) Cool deltas: Sedimentological, geomorphological and geophysical characterization of ice-contact deltas and implications for their reservoir properties (Salpausselkä, Finland). Sedimentology 68(7):3057–3101. https://doi.org/10.1111/SED.12884
  • 31. Lefevre J (1965) Etude hydrologique de la moyenne Sanaga. Rapport ronéo. ORSTOM. Yaoundé.
  • 32. Liu Yanxia DuT, Huang H, Liu Y, Zhang Y (2019) Estimation of sediment compaction and its relationship with river channel distributions in the Yellow River delta, China. CATENA 182:104–113. https://doi.org/10.1016/j.catena.2019.104113
  • 33. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method 1. Geophys Prospect 44(1):131–152
  • 34. Loke MH, Dahlin T (2002) A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion. J Appl Geophys 49:149–162
  • 35. Loke MH (2000) Electrical imaging surveys for environmental and engineering studies: a practical guide to 2-D and 3-D surveys. Electronic version available from http://www.terraplus.com
  • 36. Loke MH (2001) Electrical imaging surveys for environmental and engineering studies: a practical guide to 2D and 3D surveys, 62 pp. Available at http://www.geoelectrical.com
  • 37. Loke MH (2016) RES2DINV version 4.05. Geoelectrical Imaging 2D and 3D. Instruction Manual. Geotomo Software, http://www.geotomosoft.com.
  • 38. Mackens S, Klitzsch N, Grützner C, Klinger R (2017) Quaternary sediment architecture in the Orkhon Valley (central Mongolia) inferred from capacitive coupled resistivity and Georadar measurements. Geomorphology. https://doi.org/10.1016/j.geomorph.2017.05.0020
  • 39. Maillet G, Rizzo E, Revil A, Vella C (2005) Resolution electrical resistivity tomography (ERT) in a transition zone environment. Application for detailed internal architecture and inflling processes study of Rhône River paleo-channel. Mar geophys Res 26: 317–328. https://doi.org/10.1007/s11001-005-3726-5.
  • 40. Marescot L (2008) Imagerie Electrique pour Géologues, Tomoquest édition, 73p.
  • 41. Marie G, Ahokangas E, Mäkinen J, Pasanen A, Malehmir A (2017) Interlobate esker architecture and related hydrogeological features derived from a combination of high-resolution reflection seismics and refraction tomography, Virttaankangas, southwest Finland. Hydrogeol J 25:1–17
  • 42. Menanga Tokouet R, Yene Atangana JQ, Yem M, Ekomane E, Deffo F, Akono FD, Mienlam Essi MF (2022) Geoelectrical imaging and spatial distribution of alluvial materials of the Sanaga River (Cameroon, Central Africa). Stud Geophys Geod 66:62–79. https://doi.org/10.1007/s11200-020-1083-0
  • 43. Meybeck M (1993) Riverine transport of atmospheric carbon: sources, global typology and budget. Water Air Soil Pollut 70(1–4):443–463. https://doi.org/10.1007/BF01105015
  • 44. Miall AD (1978) Fluvial sedimentology. Canadian Society of Petroleum Geologists Memoir 5, Calgary, Alberta, Canada
  • 45. Miall AD (1996) The geology of fluvial deposits. Sedimentary Facies, Basin Analysis, and
  • 46. Moore DM, Reynolds Jr RC (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford, p 332p
  • 47. Mossa J, James LA (2013) Impacts of mining on geomorphic systems. Treatise on petroleum geology. Geomorphology 13:74–95
  • 48. Nangue MJ (2007) The seismicity of Cameroon. Sci Developpement 5:24–25
  • 49. Nédelec A, Macaudière J, Nzenti JP, Barbey P (1986) Evolution structurale et métamorphique des schistes de Mbalmayo (Cameroun). Implications pour la structure de la zone mobile panafricaine d’Afrique centrale au contact du craton du Congo. CR Acacd Sci Paris 303:75–80
  • 50. Nimnate P, Thitimakorn T, Choowong M, Hisada K (2017) Imaging and locating paleo-channels using geophysical data from meandering system of the Mun River, Khorat Plateau, and Northeastern Thailand. Open Geosci 9:675–688
  • 51. Nzenti JP, Barbey P, Macaudière J, Soba D (1988) Origin and evolution of late Precambrian high-grade Yaounde gneisses (Cameroon). Precambrian Res 38:91–109
  • 52. Ostad-Ali-Askari K, Shayannejad M, Ghorbanizadeh-Kharazi H (2017) Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan. Iran KSCE J Civ Eng 21:134–140. https://doi.org/10.1007/s12205-016-0572-8
  • 53. Palacky GJ (1987) Resistivity characteristic of geologic targets. In: Nabighian MN (ed) Electromagnetic methods applied geophysics theory, 1. Society of exploration Geophysicists, Tulsa, Okla, pp 53–129
  • 54. Pan X, KoKo AN, Aung Z, Chiam K, Wu D, Chu J (2019) Interpretation of distribution of ancient rivers in Singapore using 3D geological model. Geo-Congress 2019 GSP 311.
  • 55. Patti G, Grassi S, Morreale G, Corrao M, Imposa S (2021) Geophysical surveys integrated with rainfall data analysis for the study of soil piping phenomena occurred in a densely urbanized area in eastern Sicily. Nat Hazards 108:1–26
  • 56. Pellicer XM, Gibson P (2011) Electrical resistivity and ground penetrating radar for the characterization of the internal architecture of Quaternary sediments in the Midlands of Ireland. J Appl Geophys 75:638–647
  • 57. Pinet P, Souriau M (1988) Continental erosion and large scale relief. Tectonics 7:563–582
  • 58. Pirttijärvi M, (2010) Joint interpretation of electromagnetic and geoelectrical soundings using 1-D layered earth model. University of Oulu. User's guide to version 1.4. 48p.
  • 59. Rockware (2010) RockWorks 15. User’s manual, CO, USA, 312p. Available online: https://jaketa.hu/files/szoftverek/rockworks/RockWorks_15_Manual.pdf. Accessed 3 May 2022
  • 60. Rust BR (1978) A classification of alluvial channel systems. In: Society DG (ed) Fluvial sedimentology, pp 187–198
  • 61. Sangen MA (2011) New results on paleoenvironmental conditions in equatorial Africa derived from alluvial sediment of Cameroonian rivers. Proc Geol Assoc 122:212–223
  • 62. Sasaki Y (1992) Resolution of resistivity tomography inferred from numerical simulation. Geophys Prospect 40:453–464. http://refhub.elsevier.com/s0037-0738(13)00138-3/rf0135
  • 63. Shepard FP (1954) Nomenclature based on sand-silt-clay ratio. J Sediment Petrol 24:151–158
  • 64. Sinha R, Yadav GS, Gupta S, Singh A, Lahiri SK (2013) Geo-electric resistivity evidence for subsurface palaeochannel systems adjacent to Harappan sites in northwest India. Quart Int 308–309:66–75
  • 65. Steel RJ, Thompson DB (1983) Structures and textures in Triassic braided stream conglomerates (‘Bunter’ Pebble Beds) in the Sherwood Sandstone Group, N Staffordshire, England. Sedimentology 30:341–367
  • 66. Terrizzano CM, Fazzito SY, Cortés JM, Rapalini AE (2012) Electrical resistivity tomography applied to the study of neotectonic structures, northwestern Precordillera Sur, Central Andes of Argentina. J South Am Earth Sci 34:47–60. https://doi.org/10.1016/j.jsames.2011.10.002
  • 67. Toonen WHJ, Maarten G, Kleinhans, Cohen KM, (2012) Sedimentary architecture of abandoned channel fills. Earth Surf Process Landforms 37:459–472. https://doi.org/10.1002/esp.3189
  • 68. Toteu SF, Penaye J, Poudjoum Djomeni Y (2004) Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Can J Earth Sci 41:73–85
  • 69. Tye AM, Kessler H, Ambrose K, Williams JDO, Tragheim D, Scheib A, Raines M, Kuras O (2010) Using integrated near-surface geophysical surveys to aid mapping and interpretation of geology in an alluvial landscape within a 3D soil-geology framework. Near Surface Geophys 9:15–31. https://doi.org/10.3997/1873-0604.2010038
  • 70. Uhlemann S, Kuras O, Laura A, Naden ER, David A, Polya (2017) Electrical resistivity tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia. J Asian Earth Sci 147:402–414. https://doi.org/10.1016/j.jseaes.2017.07043
  • 71. Vayssière A, Rué M, Recq C, Gardère P, Bozsó E, Castanet C, Virmoux C, Gautier E (2019) Lateglacial changes in river morphologies of northwestern Europe: an example of a smooth response to climate forcing (Cher River, France). Geomorphology. https://doi.org/10.1016/j.geomorph.2019.05.019
  • 72. Vayssière A, Castanet C, Gautier E, Virmoux C, Dépret T, Gandouin E, Develle AL, Mokadem F, Copard SS, Sabatier P, Carcaud N (2020) Readjustments of a sinuous river during the last 6000 years in northwestern Europe (Cher River, France): from an active meandering river to a stable river course under human forcing. Geomorphology 370:107–395. https://doi.org/10.1016/j.geomorph.2020.107395
  • 73. Visher GS (1969) Grain size distributions and depositional processes. J Sedim Petrol Tulsa 39:1074–1106p
  • 74. Ward SH (1990) Resistivity and induced polarization method. Geotech Environ Geophys IG 1:147–189
  • 75. Waxman MH, Smits LJH (1968) Electrical conductivities in oil-bearing shaly sands. J Pet Technol 20:107–122. http://refhub.elsevier.com/s0013-7952(13)00337-2/rf0220.
  • 76. Yadav GS, Dasgupta AS, Sinha R, Lal T, Srivastava KM, Singh SK (2010) Shallow sub-surface stratigraphy of interfluves inferred from vertical electric soundings in western Ganga plains, India. Quat Int 227:104–115
  • 77. Yang YL, Zhang T, Liu SY (2020) Influence factor analysis and calculation model for thermal/electrical resistivity of geomaterials. Measurement. https://doi.org/10.1016/j.measurement.2019.107373
  • 78. Zhang T, Cai G, Liu S, Puppala AJ (2017) Investigation on thermal characteristics and prediction models of soils. Int J Heat Mass Transf 106:1074–1086
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5b983a7-2740-4bb6-b431-2b48b2a81f51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.