PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oddziaływanie przeciwdrobnoustrojowych peptydów z jonami metali : relacja między chemią koordynacyjną, strukturą, termodynamiką a sposobem działania

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The interaction of antimicrobal peptides with metal ions : the relationship between coordination chemistry, structure, thermodynamics and mode of action
Języki publikacji
PL
Abstrakty
EN
Increasing bacterial and fungal drug resistance makes novel, effective antimicrobial treatments actively sought. Because of the general lack of resistance towards antimicrobial peptides (AMPs), they are being relied on as a novel class of therapeutics aimed to conquer drug-resistant bacteria and fungi. There are numerous ways in which AMPs might interact with pathogens, such as membrane disruption, production of reactive oxygen species, inhibition of cell wall, nucleic acid and protein synthesis or by the withdrawal of essential metal ions. Biologically indispensable metal ions, such as Zn(II) and Cu(II), which are the key players of this project, have a dual effect on the activity of antimicrobial peptides: (i) AMPs bind them, so that microbes cannot get enough metals essential for their life and virulence (withdrawal of metal ions, nutritional immunity) or (ii) AMPs need the given metal ion as a booster of their antimicrobial activity (metal ions affect the AMP charge and/or structure). In this chapter, we discuss the impact of the coordination of Cu(II) and Zn(II) to several antimicrobial peptides, focusing on the thermodynamics, structure and coordination chemistry. The comparison of these data to the outcome of biological growth studies (determination of minimal inhibitory concentration (MIC) of metalAMP complexes and their derivatives allows to draw conclusions about the relationship between the metal-antimicrobial peptide complex structure, stability mode of action and efficacy. In the nearest future, the most efficient complexes may serve as templates for a rational design of novel, more potent AMP-based therapeutics. Further improvement can be reached through the modification of the most promising AMP complexes using (i) specifically targeted antimicrobial peptides, in which the AMP will be covalently linked to a targeting peptide (Figure 1) or (ii) chimeric compounds comprising AMPs bound to conventional antimicrobials or peptidomimetic modifications (Figure 2).
Rocznik
Strony
365--391
Opis fizyczny
Bibliogr. 70 poz., rys.
Twórcy
autor
  • Wydział Chemii Uniwersytetu Wrocławskiego, F. Joliot-Curie 14, 50-383 Wrocław, Polska
  • Wydział Chemii Uniwersytetu Wrocławskiego, F. Joliot-Curie 14, 50-383 Wrocław, Polska
  • Wydział Chemii Uniwersytetu Wrocławskiego, F. Joliot-Curie 14, 50-383 Wrocław, Polska
  • Wydział Chemii Uniwersytetu Wrocławskiego, F. Joliot-Curie 14, 50-383 Wrocław, Polska
  • Wydział Chemii Uniwersytetu Wrocławskiego, F. Joliot-Curie 14, 50-383 Wrocław, Polska
  • Wydział Chemii Uniwersytetu Wrocławskiego, F. Joliot-Curie 14, 50-383 Wrocław, Polska
  • Wydział Chemii Uniwersytetu Wrocławskiego, F. Joliot-Curie 14, 50-383 Wrocław, Polska
  • Wydział Nauk o Zdrowiu Uniwersytetu Opolskiego, Katowicka 68, 45-060 Opole, Polska
  • Wydział Chemii Uniwersytetu Wrocławskiego, F. Joliot-Curie 14, 50-383 Wrocław, Polska
Bibliografia
  • [1] K.A. Brogden, Nat Rev Microbiol, 2005, 3(3), 238.
  • [2] H. Jenssen, P. Hamill, R.E.W. Hancock, Clinical Microbiology Reviews, 2006, 19(3), 491.
  • [3] M.I. Hood, E.P. Skaar, Nature Reviews Microbiology, 2012, 10(8), 525.
  • [4] L. Benov, H. Sage, I. Fridovich, Archives of Biochemistry and Biophysics, 1997, 340(2), 305.
  • [5] J. Janiszewska, Polimery, 2014, 59(10), 699.
  • [6] P. Vlieghe, V. Lisowski, J. Martinez, M. Khrestchatisky, Drug Discov Today, 2010, 15(1-2), 40.
  • [7] Z. Gai, S.L. Samodelov, G. A. Kullak-Ublick, M. Visentin, Molecules, 2019, 24(3), 653.
  • [8] B. L. Bray, Nat Rev Drug Discov., 2003, 2(7), 587.
  • [9] R. Eckert, K.M. Brady, E.P. Greenberg, F. Qi, D.K. Yarbrough, J. He, I. McHardy, M.H. Anderson, W. Shi, Antimicrob Agents Chemother, 2006, 50(11), 3833.
  • [10] M.R. Yeaman, N.Y. Yount, Pharmacol. Rev., 2003, 55(1), 27.
  • [11] R. Crichton, Biological Inorganic Chemistry, 2008, 10.1016/B978-044452740-0.50012-0.
  • [12] C. Andreini, L. Banci, I. Bertini, A. Rosato, J. Proteome Res., 2006, 5(1), 196.
  • [13] J. Osredkar, Journal of Clinical Toxicology, 2011, S3 :001, DOI : 10.4172/2161-0495.S3-001.
  • [14] T. Fukada, S. Yamasaki, K. Nishida, M. Murakami, T. Hirano, J. Biol. Inorg. Chem., 2011, 16(7), 1123.
  • [15] K. Patel, A. Kumar, S. Durani, Biochim Biophys Acta, 2007, 1774(10), 1247.
  • [16] R.R. Crichton, In Biological Inorganic Chemistry (Second Edition), Elsevier: Oxford, 2012, 279.
  • [17] A. Gupta, S. Lutsenko, Future medicinal chemistry, 2009, 1(6), 1125.
  • [18] G.J. Brewer, Curr. Opin. Chem. Biol., 2003, 7(2), 207.
  • [19] R.R. Conry, Copper: Inorganic & Coordination Chemistry Based in part on the article Copper: Inorganic & Coordination Chemistry by Rebecca R. Conry & Kenneth D. Karlin which appeared in the Encyclopedia of Inorganic Chemistry, First Edition. Encyclopedia of Inorganic Chemistry, 2005.
  • [20] M. Marszałek, Postepy Hig. Med. Dosw., 2015, 69, 309.
  • [21] E.T.A.S. Jaikaran, A. Clark, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2001,1537, 179.
  • [22] M. Rowińska-Żyrek, Dalton Trans., 2016, 19, 8099.
  • [23] S. Chakraborty, B. Chatterjee, S. Basu, Biophys. Chem., 2012, 168–169, 1.
  • [24] M. Alghrably, D. Dudek, A. H. Emwas, Ł. Jaremko, M. Rowińska-Żyrek, Inorg. Chem., 2020, 59, 2527.
  • [25] P. Westermark, A. Andersson, G.T. Westermark, Physiol. Rev., 2011, 91(3), 795.
  • [26] H. Jang, B. Ma, R. Lal, R. Nussinov, Biophys. J., 2008, 95(10), 4631.
  • [27] L. Wang, Q. Liu, J.C. Chen, Y.X. Cui, B. Zhou, Y.X. Chen, Y.F. Zhao, Y.M. Li, Biol. Chem., 2012, 393(7), 641.
  • [28] P.H. Nguyen, A. Ramamoorthy, B.R. Sahoo, J. Zheng, P. Faller, J.E. Straub, L. Dominguez, J.-E. Shea, N.V. Dokholyan, A. De Simone, B. Ma, R. Nussinov, S. Najafi, S.T. Ngo, A. Loquet, M. Chiricotto, P. Ganguly, J. McCarty, M.S. Li, C. Hall, Y. Wang, Y. Miller, S. Melchionna, B. Habenstein, S. Timr, J. Chen, B. Hnath, B. Strodel, R. Kayed, S. Lesné, G. Wei, F. Sterpone, A. J. Doig, P. Derreumaux, Chem. Rev., 2021, 121(4), 2545.
  • [29] A.M. Cole, Y.H. Kim, S. Tahk, T. Hong, P. Weis, A.J. Waring, T. Ganz, FEBS Lett., 2001, 504 (1-2), 5.
  • [30] R. Donato, The International Journal of Biochemistry & Cell Biology, 2001, 33(7), 637.
  • [31] G. Fritz, H. M. Botelho, L. A. Morozova-Roche, C. M. Gomes, The FEBS Journal, 2010, 277(22), 4578.
  • [32] D. Dudek (2021) Oddziaływanie jonów cynku i miedzi z wybranymi peptydami przeciwdrobnoustrojowymi, Rozprawa doktorksa, Uniwersytet Wrocławski.
  • [33] Å. Lundwall, A. Bjartell, A.Y. Olsson, J. Malm, Molecular Human Reproduction, 2002, 8(9), 805.
  • [34] The UniProt, C., UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 2019, 47, (D1), D506.
  • [35] J. Malm, M. Jonsson, B. Frohm, S. Linse, The FEBS Journal, 2007, 274(17), 4503.
  • [36] A. Peter, H. Lilja, A. Lundwall, J. Malm, Eur J Biochem., 1998, 252(2), 216.
  • [37] H. Zhao, W.-H.Lee, J.-H. Shen, H. Li, Y. Zhang, Peptides, 2008, 29(4), 505.
  • [38] A.M.L. Edström, J. Malm, B. Frohm, J.A. Martellini, A. Giwercman, M. Mörgelin, A.M. Cole, O. E. Sørensen, J Immunol., 2008, 181(5), 3413.
  • [39] D. Bellotti, M. Toniolo, D. Dudek, A. Mikołajczyk, R. Guerrini, A. Matera-Witkiewicz, M. Remelli, M. Rowińska-Żyrek, Dalton Transactions, 2019, 48, 13740.
  • [40] S. Chernysh, S.I. Kim, G. Bekker, V.A. Pleskach, N.A. Filatova, V.B. Anikin, V.G. Platonov, P. Bulet, Proc Natl Acad Sci U S A, 2002, 99(20), 12628.
  • [41] Y. Kim, S.K. Lee, S. Bae, H. Kim, Y. Park, N.K. Chu, S.G. Kim, H.-R. Kim, Y.-I. Hwang, J.S. Kang, W.J. Lee, Immunology Letters, 2013, 149(1), 110.
  • [42] M. Rykaczewska-Czerwińska, P. Oleś, M. Oleś, M. Kuczer, D. Konopińska, A. Plech, Acta poloniae pharmaceutica, 2015, 72(1), 205.
  • [43] T. Kowalik-Jankowska, Ł. Biega, M. Kuczer, D. Konopińska, J. Inorg. Biochem., 2009, 103(1), 135.
  • [44] M. Kuczer, M. Błaszak, E. Czarniewska, G. Rosiński, T. Kowalik-Jankowska, Inorg. Chem., Inorg. Chem., 2013, 52(10), 595.
  • [45] A. Kadej, M. Kuczer, T. Kowalik-Jankowska, Dalton Trans., 2015, 44(47), 20659.
  • [46] D. Dudek, A. Miller, S. Draghi, D. Valensin, A. Mikołajczyk, A. Matera-Witkiewicz, D. Witkowska, K. Stokowa-Sołtys, M. Rowińska-Żyrek, J. Inorg. Biochem., 2020, 213:11127
  • [47] H. Du, S. Puri, A. McCall, H.L. Norris, T. Russo, M. Edgerton, Front. Cell. Infect. Microbiol., 2017, 7, 41.
  • [48] E.J. Helmerhorst, I.M. Reijnders, W. van’t Hof, I. Simoons-Smit, E.C. Veerman, A.V. Amerongen, Antimicrob. Agents Chemother., 1999, 43(3), 702.
  • [49] S. Puri, M. Edgerton, Eukaryotic Cell, 2014, 13(8), 958.
  • [50] R. Petruzzelli, M.E. Clementi, S. Marini, M. Coletta, E. Di Stasio, B. Giardina, F. Misiti, Biochem. Biophys. Res. Commun., 2003, 311(4), 1034.
  • [51] E.J. Helmerhorst, R.F. Troxler, F.G. Oppenheim, Proc. Natl. Acad. Sci. U. S. A., 2001, 98(25), 14637.
  • [52] S.S. Bradford, M.J. Ross, I. Fidai, J.A. Cowan, ChemMedChem. 2014, 9(6), 1275.
  • [53] K. Kulon, D. Valensin, W. Kamysz, G. Valensin, P. Nadolski, E. Porciatti, E. Gaggelli, H. Kozłowski, J. Inorg. Biochem., 2008, 102, 960.
  • [54] R.A. Himes, G.Y. Park, G.S. Siluvai, N.J. Blackburn, K.D. Karlin, Angew. Chem., 2008, Int. Ed. 47, 9084.
  • [55] P.M. Cummins, A. Pabon, E.H. Margulies, M.J. Glucksman, J. Biol. Chem.,1999, 274, 16003.
  • [56] R.I. Lehrer, J. Andrew Tincu, S.W. Taylor, L.P. Menzel, A.J. Waring, Integr. Comp. Biol., 2003, 43, 313.
  • [57] I.H. Lee, C. Zhao, Y. Cho, S.S.L. Harwig, E.L. Cooper, R.I. Lehrer, FEBS Letters, 1997, 400, 158.
  • [58] S.A. Juliano, S. Pierce, J.A. deMayo, M.J. Balunas, A.M. Angeles-Boza, Biochem., 2017, 56, 1403.
  • [59] A. Miller, A. Matera-Witkiewicz, A. Mikołajczyk, R. Wieczorek, M. Rowińska-Żyrek, Inorg. Chem., 2021, 60, 12730.
  • [60] E.J. Noga, U. Silphaduang, Nature, 2001, 414, 268.
  • [61] S.V. Raju, P. Sarkar, P. Kumar, J. Arockiaraj, Int. J. Pept. Res. Ther., 2021, 27, 91.
  • [62] D. Łoboda, H. Kozłowski, M. Rowińska-Żyrek, J. Chem.2018, 42, 7560.
  • [63] J.L. Alexander, Z. Thompson, J.A. Cowan, ACS Chemical Biology, 2018, 13(4), 844.
  • [64] M.B. Rao, A.M. Tanksale, M.S. Ghatge, V.V. Deshpande, Microbiology and molecular biology reviews, 1998, 62(3), 597.
  • [65] M. Mahlapuu, J. Håkansson, L. Ringstad, C. Björn, Frontiers in Cellular and Infection Microbiology, 2016, 6, 194.
  • [66] A. Begum, D. Sujatha, K. Prasad, K. Bharathi, Asian Journal of Chemistry, 2017, 29(9), 1879.
  • [67] H.M. Werner, C.C. Cabalteja, W.S. Horne, Chembiochem : a European journal of chemical biology, 2016, 17(8), 712.
  • [68] J. Vagner, H. Qu, V.J. Hruby, Current Opinion in Chemical Biology 2008, 12, 292.
  • [69] I. Avan, C.D. Hall, A.R. Katritzky, Chemical Society Reviews, 2014, 43, 3575.
  • [70] J. Wątły, A. Miller, H. Kozłowski, M. Rowińska-Żyrek, J. Inorg. Biochem., 2021, 217, 111386.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5b77b28-e059-4552-b1b8-a138c9f0f879
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.