Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The demand for small, thin, and lightweight electronic devices is increasing. More advanced design and assembly processes of electronic packaging technology have developed to fulfill this need. The critical processes in semiconductor packaging involved in meeting the ever increasing demands of technology include wafer back grinding, dicing, and die attachment. With low die thickness, the risk of die failure, which can cause functional damage, is high. In the die attachment process, the pin ejector causes an impact during the pick and place process. Those effects can result in a micro indentation or micro crack under the die and would be the weak point throughout the entire process. This study designed and evaluated an ejector system for the die attachment process. The proposed method uses a static pole heated inside the cavity for the platform to die before being ejected. Vacuum stabilizes the die suction. Moreover, heat softens the sawing tape and weakens the die adhesion. For die selection during the die attachment process, the results show that the critical die crack problem for a thin and rectangular die is solved using the proposed method. In summary, the packaging of semiconductors has advanced to accommodate the pick-up technology solution in relation to the challenging material needed for the current miniaturization market trend and demand.
Wydawca
Rocznik
Tom
Strony
57--64
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
autor
- Department of Electrical Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
autor
- Department of Electrical Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Bibliografia
- 1. Abdullah Z., Vigneswaran L., Ang A. & Yuan G.Z. 2012. Die attach capability on ultra-thin wafer thickness for power semiconductor. 35th IEEE/ CPMT International Electronics Manufacturing Technology Conference (IEMT), 1–5.
- 2. Arabi F., Theolier L., Youssef T., Medina M., Deletage J.-Y. & Woirgard E. 2017. Effect of voids on crack propagation in AuSn die attach for hightemperature power modules. 18th International Conference on Thermal, Mechanical and MultiPhysics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 1–6.
- 3. Peng B., Huang Y.A., Yin Z.P. & Xiong Y.L. 2011. On the analysis of dynamic effect in the die pickup process. 12th International Conference on Electronic Packaging Technology and High Density Packaging, 1–4.
- 4. Jeon E.B., Park S.H., Yoo Y.S. & Kim H.S. 2016. Analysis of interfacial peeling of an ultrathin silicon wafer chip in a pick-up process using an air blowing method. IEEE Transactions on Components, Packaging and Manufacturing Technology, 1696–1702.
- 5. Qian R. & Liu Y. 2016. Thin and large die assembly pick up process optimization by dynamic modeling. 17th International Conference on Electronic Packaging Technology (ICEPT), 147–152.
- 6. Shen H., L. Ye, Tang L. & Liu Z. 2015. Study on thin die pick-up process based on Taguchi method. 16th International Conference on Electronic Packaging Technology (ICEPT), 1344–1347.
- 7. Miyazaki C., Shimamoto H., Uematsu T., Abe Y., Kitaichi K., Morifuji T. & Yasunaga S. 2010. Development of high accuracy wafer thinning and pickup technology for thin wafer(die). IEEE CPMT Symposium Japan, 1–4.
- 8. Liau W.S. & Gan T.K. 2018. Collet Auto Clean System. A smart automatic solution for die bonding pick up tool lifespan & throughput enhancement. IEEE 38th International Electronics Manufacturing Technology Conference (IEMT), 1–6.
- 9. Medding J., Stalder R., Niederhauser M. & Stoessel P. 2004. Thin die bonding techniques. IEEE/ CPMT/SEMI 29th International Electronics Manufacturing Technology Symposium, 68–73.
- 10. Gerets C., Derakhshandeh J., Wang T., Capuz G., Podpod A., Demeurisse C., Rebibis K.J., Miller A., Beyer G. & Beyne E. 2014. Picking large thinned dies with high topography on both sides. IEEE 16th Electronics Packaging Technology Conference (EPTC), 175–179.
- 11. Chan Y.S., Chew J., Goh C.H., Chua S.K. & Yeo A. 2014. Characterization of dicing tape adhesion for ultrathin die pick-up process. IEEE 16th Electronics Packaging Technology Conference (EPTC), 554–557.
- 12. Sun W., Zhu W.H., Che F.X., Wang C.K., Sun A.Y.S. & Tan H.B. 2007. Ultra-thin die characterization for stack-die packaging. Proceedings 57th Electronic Components and Technology Conference, 1390–1396.
- 13. Ahmad I., Bachok N.N., Chiang N.C., Talib M.Z.M., Rosle M.F., Latip F.L.A., Aziz Z.A. 2007. Evaluation of different die attach film and epoxy pastes for stacked die QFN package. 9th Electronics Packaging Technology Conference (EPTC), 869–873.
- 14. Abdullah I., Chiang N.C., Mokhtar U., Said A., Talib M.Z., Ahmad I. 2007. Warpage and wire sweep analysis of QFN molded strip using experimental and modeling methods. 9th Electronics Packaging Technology Conference, EPTC, 494–498.
- 15.Jalar A., Rosle M.F., Hamid M.A.A. 2008. Die attach film performance in 3D QFN stacked die. WSEAS Transactions on Applied and Theoretical Mechanics, 3(3), 104–113.
- 16. Rahman A.R.A., Nayan N.A. 2019. Critical challenges and solutions for device miniaturization in integrated circuit packaging technology. Journal of Engineering and Applied Sciences, 13(15), 6025–6032.
- 17. Zamani N.D.M., Zain A.R.M., Majlis B.Y. 2016. Modelling of 2-D Gallium Nitride (GaN) photonic crystal. 2016. 12th IEEE Int. Conf. on Semiconductor Electronics (ICSE 2016), 54–56.
- 18. Hou L., Tan S., Yang L, Zhang Z., Bergmann N.W. 2017. Autonomous wireless sensor node with thermal energy harvesting for temperature monitoring of industrial devices. International Journal of Online and Biomedical Engineering (iJOE), 13(4), 75–82.
- 19. Yu X.W. 2017. Design and application of wireless sensor network monitoring software based on LABVIEW. International Journal of Online and Biomedical Engineering (iJOE), 13(5), 29–42.
- 20. Khoo V.C. 2019. A case study of return on investment for multisites test handler in the semiconductor industry through theory of industry 4.0 ROI Relativity. International Journal of Recent Contributions from Engineering, Science & IT (iJES), 7(3), 23–40.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5b7484a-4f23-43ac-bad9-973dd7b86022