PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of Technology for Ultrafine-Grained Materials for Usage as Materials in Nuclear Power

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nuclear power is associated with great environmental risks. In many cases, the problem of accidents of nuclear power plants is related to the use of materials that do not fully meet the following requirements: high corrosion resistance; high temperature resistance; creep resistance; fracture toughness; stability of structure and properties under irradiation. Therefore, studies aimed at finding materials that can withstand long-term loads at high temperatures, aggressive environment and gradual structural degradation under the influence of radiation are relevant. One of the structural materials, which has high resistance to radiation, is austenitic stainless steel. And one of the ways to increase the radiation resistance of parts made of this steel grade is to grind its microstructure to ultra-fine-grained state. Such structures provide a combination of a high level of strength characteristics with high plasticity, which distinguishes such materials from their coarse-grained counterparts. Also, numerous grain boundaries serve as runoff surfaces for radiation defects, preserving the structure, which causes their increased radiation resistance. From all methods for producing sub-ultra-fine grained materials the most promising is the severe plastic deformation (SPD), which can be implemented in the metal in various ways, including radial-shear rolling. This paper presents the results of studies of the process of radial-shear rolling on the mill SVP-08 and its effect on the microstructure and properties of austenitic stainless steel. During the study, bars with a diameter of 13 mm from AISI-321 steel with a grain size of 300-600 nm were obtained, while the mechanical properties increased more than 2 times compared to the initial values.
Rocznik
Strony
114--125
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Rudny Industrial Institute, Kazakhstan
  • Nazarbayev University, Kazakhstan
  • Rudny Industrial Institute, Kazakhstan
  • Karaganda State Industrial University, Kazakhstan
  • Czestochowa University of Technology, Poland
Bibliografia
  • 1.Arbuz, A., Naizabekov, A., Lezhnev, S., Panin, E. (2018). Combined process “helical rolling-pressing” and its effect on the microstructure of ferrous and non-ferrous materials, Metall. Res. Technol., 115, 213.
  • 2. ASM Metals Hand Book. (2002). Fatigue and Fracture. ASM International.
  • 3. Bhadeshia, H. K. D. H. (2014). Physical Metallurgy. Materials Science And Technology, 30(9), pp. 995-997.
  • 4. Bloom, E.E. (1998).The challenge of developing structural materials for fusion power system. Journal of Nuclear Materials, 258-263, рр. 7-17.
  • 5. Dobatkin, S., Galkin, S., Estrin, Y., Serebryany, V., Diez, M., Martynenko, N., Lukyanova, E. and Perezhogin, V. (2019).Grain refinement, texture, and mechanical properties of a magnesium alloy after radial-shear rolling. Journal of Alloys and Compounds, 774, рр. 969-979.
  • 6. Ge, X., Li, J., Wang, H, Zhang, C., Liu, Y. and Luo, J. (2019). Macroscale super lubricity under extreme pressure enabled by the combination of graphene-oxide nanosheets with ionic liquid. Carbon, 151, pp. 76-83.
  • 7. Ghazani, M.S. and Eghbali, B. (2018).Characterization of the hot deformation microstructure of AISI 321 austenitic stainless steel. Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing, 730, pp. 380-390.
  • 8. Kalinin, G., Barabash, V., Cardella, A., Dietz, J., Ioki, K., Matera, R., Santoro, R.T. and Tivey, R. (2000). The ITER Home Teams. Assessment and selection of materials for ITER in-vessel Components. Journal of Nuclear Materials, 283-287, рр.10-19
  • 9. Koch, C.C., Ovid'ko, I.A., Seal, S. and Veprek, S. (2007) Structural nanocrystalline materials: Fundamentals and applications. Cambridge: Cambridge University Press
  • 10. Lenard, J.G. (2013). Primer on Flat Rolling. Amsterdam: Elsevier.
  • 11. Lenard, J.G., Pietrzyk, M. and Cser L. (2005). Mathematical and Physical Simulation of the Properties of Hot Rolled Products. Amsterdam: Elsevier.
  • 12. Lezhnev, S.N., Naizabekov, A.B., Panin, Е.А. and Arbuz A.S. (2018). Computer simulation of microstructure evolution in radial-shear rolling using SIMUFACT FORMING software and MATILDA material database.XIX International scientific conference «New technologies and achievements in metallurgy, material engineering, production engineering and physics», Częstochowa, p. 31-34.
  • 13. Maksimkin, O. P., Gusev, M.N., Tsai, K.V., Yarovchuk, A.V., Rybalchenko, O.V., Enikeev, N.A., Valiev, R.Z. and Dobatkin, S.V. (2015). Effect of neutron irradiation on the microstructure and the mechanical and corrosion properties of the ultrafine grained stainless Cr-Ni steel. Physics of metals and metallography, 116(12), рр. 1270-1278.
  • 14. Mansur, L.K., Rowcliffe, A.F., Nanstad, R.K., Zinkle, S.J., Corwin, W.R. and Stoller R.E. (2004). Materials needs for fusion, Generation IV fission reactors and spallation neutron sources - similarities and differences. Journal of Nuclear Materials, 329- 333, рр. 166-172.
  • 15. Murty, K.L. and CharitI. (2008). Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. Journal of Nuclear Materials, 383, pp. 189-195.
  • 16. Nayzabekov, A., Lezhnev, S., Panin, E., Arbuz, A. and Koinov, T. (2018). Computer modelling of radial-shear rolling of austenitic stainless steel AISI-321. Machines, Technolоgies, Materials, 12, pp. 497-500.
  • 17. Rajputa, S.K., Chaudhari, G.P. and Nath, S.K. (2016). Characterization of hot deformation behavior of a low carbon steel using processing maps, constitutive equations and Zener-Hollomon parameter. Journal of Materials Processing Technology, 237, pp. 113-125.
  • 18. Rybalchenko, O.V., Tokar, A.A., Terentyev, V.F., Prosvirnin, D.V., Raab, G.I. and Dobatkin, S.V. (2016). Effect of equal-channel angular pressing in the temperature range 200-400°C on the performance properties of steel 08H18N10T. VI Russian conference on nanomaterials with elements of scientific school for youth, pp. 321- 322.
  • 19. Sheremetyev, V., Kudryashova, A., Cheverikin, V., Korotitskiy, A., Galkin, S., Prokoshkin, S. and Brailovski, V. (2019). Hot radial shear rolling and rotary forging of metastable beta Ti-18Zr-14Nb (at. %) alloy for bone implants: Microstructure, texture and functional properties. Journal of Alloys and Compounds, 800, pp. 320- 326.
  • 20. Tokar, A.A., Rybalchenko, O.V., Belyakov, A.N., Prosvirnin, D.V., Taranchuk, V.I., Terent'ev, V.F., Raab, G.I. and Dobatkin, S.V. (2018). Microstructure and fatigue properties of austenitic corrosion-resistant steel 08H18N10T after equal-channel angular pressing and subsequent heating. Proceedings of IX-th Eurasian scientific practical conference. p. 97.
  • 21. Valiev, R.Z., Islamgaliev, R.K. and Alexandrov, I.V. (2000).Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science, 45(2), рр. 103-189.
  • 22. Yvon, P. and Carr F. (2009). Structural materials challenges for advanced reactor systems. Journal of Nuclear Materials, 385, рр. 217-222.
  • 23. Zinkle, S.J. and Was, G.S. (2013). Materials challenges in nuclear energy. Acta Materialia, 61, рр. 735-758
  • 24. Zinkle, S.J. and Busby, J.T. (2009).Structural materials for fission & fusion energy. Materials Today, 12, pp. 12-19.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5b2f255-e144-4f2d-8e48-a4afd25d647a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.