PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An evaluation of the influence of heat treatment on the preservative retention in ash wood (Fraxinus excelsior L.)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As high temperature followed by preservation may cause many different, sometimes contrary changes in wood properties, the aim of this paper was to determine the retention and possible distribution of copper containing preservative in ash wood with an X-ray spectrometer. Two solutions corresponding to the final retention 2 and 4 kg/m3 were applied as preservative for model laboratory scale low-pressure preservation of ash wood. Before preservation was made, samples were heat treated for 2 or 6 hours at 180°C, apart from the control samples. The mapping option of the X-ray spectrometer was applied and the surface on the half-cut cross-section was analysed. Copper was acknowledged as the retention indicator. On the basis of the results obtained, it can be assumed that the heat treatment improves the treatability of samples with the parameters used. Longer treatment durations increase the uptake of the preparation solutions.
Słowa kluczowe
Rocznik
Strony
71--79
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Warsaw University of Life Sciences, Faculty of Wood Technology, Warsaw, Poland
autor
  • Warsaw University of Life Sciences, Faculty of Production Engineering, Warsaw, Poland
autor
  • Warsaw University of Life Sciences, Faculty of Production Engineering, Warsaw, Poland
Bibliografia
  • Ahmed S.A., Sehlstedt-Persson M., Hansson L., Morén T. [2013]: Evaluation of preservative distribution in thermally modified European aspen and birch boards using computed tomography and scanning electron microscopy. Journal of Wood Science 59: 57-66. DOI: 10.1007/s10086-012-1299-x
  • Awoyemi L., Jones I.P. [2011]: Anatomical explanations for the changes in properties of western red cedar (Thuja plicata) wood during heat treatment. Wood Science and Technology 45: 261-267
  • Bastani A., Adamopoulos S., Militz H. [2015]: Water uptake and wetting behaviour of furfurylated, N-methylol melamine modified and heat-treated wood. European Journal of Wood and Wood Products 73: 627-634. DOI 10.1007/s00107-015-0919-8
  • Boonstra M.J., Tjeerdsma B.F., Groeneveld H.A.C. [1998]: Thermal modification of non-durable wood species. 1. The PLATO technology: thermal modification of wood. International Research Group on Wood Preservation
  • Chaouch M., Pétrissans M., Pétrissans A., Gérardin P. [2010]: Use of wood elemental composition to predict heat treatment intensity and decayresistance of different softwood and hardwood species. Polymer Degradation and Stability 95: 2255-2259
  • Finish Thermowood Association [2003]: ThermoWood® Handbook.
  • Finnforest Gawron J. [2012]: Zmiany wybranych właściwości fizyko-chemicznych drewna jesionu wyniosłego (Fraxinus excelsior L.) poddanego modyfikacji termicznej (Changes of selected physico-chemical properties of ash wood (Fraxinus excelsior L.) subjected to thermal modification). SGGW, Warszawa [PhD thesis]
  • Gołofit T., Zielenkiewicz T., Gawron J. [2012]: FTIR examination of preservative retention in beech wood (Fagus sylvatica L.). European Journal of Wood and Wood Products 70 [6]: 907-909
  • Gunduz G., Aydemir D., Karakas G. [2010]: The effects of thermal treatment on the mechanical properties of wild Pear (Pyrus elaeagnifolia Pall.) wood and changes in physical properties. Materials & Design 30: 4391-4395
  • Hakkou M., Petrissans M., Zoulalian A., Gerardin P. [2005]: Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer Degradation and Stability 89: 1-5
  • Helsen L., Hardy A., Van Bael M.K., Mullens J. [2007]: Tanalith E 3494 impregnated wood: Characterisation and thermal behavior. Journal of Analytical and Applied Pyrolysis 78: 133-139
  • Hill C.A.S. [2006]: Wood modification. Chemical, thermal an other processes. John Wiley & Sons
  • Jin L., Archer K. [1991]: Copper based wood preservatives: Copper based wood preservatives: observations on fixation, distribution and performance. Proceedings of: American Wood Preservers' Association. Washington DC, 7 [87]: 169-183
  • Kartal S.N., Hwang W.-J., Imamura Y. [2008]: Combined effect of boron compounds and heat treatments on wood properties: Chemical and strength properties of wood. Journal of Materials Processing Technology 198: 234-240
  • Kwon J.H., Ayrilmis N. [2016]: Effect of heat-treatment of flakes on physical and mechanical properties of flakeboard. European Journal of Wood and Wood Products 74: 135-136. DOI: 10.1007/s00107-015-0961-6
  • MacLean J.D. [1952]: Preservative treatment of wood by pressure methods. U. S. Department of Agriculture
  • Mohareb A., Thévenon M.F., Wozniak E., Gérardin P. [2010]: Effects of monoglycerides on leachability and efficacy of boron wood preservatives against decay and termites. International Biodeterioration & Biodegradation 64 [2]: 135-138
  • Percin O., Sofuoglu S.D., Uzun O. [2015]: Effects of boron impregnation and heat treatment on some mechanical properties of oak (Quercus petraea Liebl.) Wood. BioResources 10 [3]: 3963-3978
  • Stamm A.J. [1956]: Thermal degradation of wood and cellulose. Journal of Industrial & Engineering Chemistry 48: 413-417
  • Terziev N., Daniel G. [2002]: Industrial kiln drying and its effect on microstructure, impregnation and properties of Scots pine timber impregnated for above ground use. Part 2. Effect of drying on microstructure and some mechanical properties of Scots pine wood. Holzforschung 56: 434-439
  • Tomak E.D., Hughes M., Yildiz U.C., Viitanen H. [2011a]: The combined effects of boron and oil heat treatment on beech and Scots pine wood properties. Part 1: Boron leaching, thermogravimetric analysis, and chemical composition. Journal of Materials Science 46 [3]: 598-607
  • Tomak E.D., Hughes M., Yildiz U.C., Viitanen H. [2011b]: The combined effects of boron and oil heat treatment on beech and Scots pine wood properties. Part 2: Water absorption, compression strength, color changes, and decay resistance. Journal of Materials Science 46 [3]: 608-615
  • Yildiz S., Gezerb E.D., Yildiz U.C. [2006]: Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment 41: 1762-1766
  • Yildiz S., Gümüşkaya E. [2007]: The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Building and Environment 42: 62-67
  • Wang W., Zhu Y., Cao J. [2013]: Evaluation of copper leaching in thermally modified Southern Yellow Pine Wood impregnated with ACQ-D. BioResources 8 [3]: 4687-4701
  • Zielenkiewicz T., Zawadzki J., Radomski A. [2012]: XRF spectrometer calibration for copper determination in wood. X-Ray Spectrometry 41 [6]: 371-373
  • Zielenkiewicz T., Zawadzki J., Radomski A., Seliga T. [2013]: XRF analysis of preservative distribution in different species wood samples after model low-pressure treatment process. Wood Research 58 [1]: 25-32
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5b07bb3-3735-4765-bc08-65f0302610bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.