PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphology of an ITO recombination layer deposited on a silicon wire texture for potential silicon/perovskite tandem solar cell applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents research on the deposition of an indium tin oxide (ITO) layer which may act as a recombination layer in a silicon/perovskite tandem solar cell. ITO was deposited by magnetron sputtering on a highly porous surface of silicon etched by the metal-assisted etching method (MAE) for texturing as nano and microwires. The homogeneity of the ITO layer and the degree of coverage of the silicon wires were assessed using electron microscopy imaging techniques. The quality of the deposited layer was specified, and problems related to both the presence of a porous substrate and the deposition method were determined. The presence of a characteristic structure of the deposited ITO layer resembling a "match" in shape was demonstrated. Due to the specificity of the porous layer of silicon wires, the ITO layer should not exceed 80 nm. Additionally, to avoid differences in ITO thickness at the top and base of the silicon wire, the layer should be no thicker than 40 nm for the given deposition parameters.
Rocznik
Strony
art. no. e148222
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. W. Reymonta 25, 30-059 Kraków, Poland
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. W. Reymonta 25, 30-059 Kraków, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. W. Reymonta 25, 30-059 Kraków, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. W. Reymonta 25, 30-059 Kraków, Poland
Bibliografia
  • [1] Hu, Y., Song, L., Chen, Y. & Huang, W. Two-terminal perovskites tandem solar cells: recent advances and perspectives. Sol. RRL 3, 1900080 (2019). https://doi.org/10.1002/solr.201900080.
  • [2] Jošt, M., Kegelmann, L., Korte, L. & Albrecht, S. Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv. Energy Mater. 10, 1904102 (2020). https://doi.org/10.1002/aenm.201904102.
  • [3] Li, X. et al. Silicon heterojunction-based tandem solar cells: past, status, and future prospects. Nanophotonics 10, 2001-2022 (2021). https://doi.org/10.1515/nanoph-2021-0034.
  • [4] Best Research-Cell Efficiency Chart. Photovoltaic Research. https://www.nrel.gov/pv/cell-efficiency.html (accesed: April, 15th, 2023).
  • [5] Li, C., Wang, Y. & Choy, W. C. H. Efficient interconnection in perovskite tandem solar cells. Small Methods 4, 2000093 (2020). https://doi.org/10.1002/smtd.202000093.
  • [6] Chen, B. et al. Insights into the development of monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 12, 2003628 (2021). https://doi.org/10.1002/smtd.202003628.
  • [7] Drabczyk, K., Kulesza-Matlak, G., Drygała, A., Szindler, M. & Lipiński, M. Electroluminescence imaging for determining the influence of metallization parameters for solar cell metal contacts. Sol. Energy 126, 14-21 (2016). https://doi.org/10.1016/J.SOLENER.2015.12.029.
  • [8] McDonald C. et al. In situ grown nanocrystalline si recombination junction layers for efficient perovskite–si monolithic tandem solar cells: toward a simpler multijunction architecture. ACS Appl. Mater. Interfaces 14, 33505-33514 (2022). https://doi.org/10.1021/acsami.2c05662.
  • [9] Mariotti, S. et al. Monolithic perovskite/silicon tandem solar cells fabricated using industrial p-type polycrystalline silicon on oxide/passivated emitter and rear cell silicon bottom cell technology. Sol. RRL 6, 2101066 (2022). https://doi.org/10.1002/solr.202101066.
  • [10] Wang, Y. et al. Recent progress in developing efficient monolithic all-perovskite tandem solar cells. J. Semicond. 41, 051201 (2020). https://doi.org/10.1088/1674-4926/41/5/051201.
  • [11] Kulesza-Matlak, G. et al. Black silicon obtained in two-step short wet etching as a texture for silicon solar cells - surface microstructure and optical properties studies. Arch. Metall. Mater. 63, 1009-1017 (2018). https://doi.org/10.24425/122436.
  • [12] Kulesza-Matlak, G. et al. Interlayer microstructure analysis of the transition zone in the silicon/perovskite tandem solar cell. Energies 14, 6819 (2021). https://doi.org/10.3390/en14206819.
  • [13] Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820-826 (2018). https://doi.org/10.1038/s41563-018-0115-4.
  • [14] Chen, B. et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4, 850-864 (2020). https://doi.org/10.1016/j.joule.2020.01.008.
  • [15] Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135-1140 (2020). https://doi.org/10.1126/science.aaz3691.
  • [16] Zheng, J. et al. Balancing charge-carrier transport and recombi-nation for perovskite/TOPCon tandem solar cells with double-textured structures. Adv. Energy Mater. 13, 2203006 (2023). https://doi.org/10.1002/aenm.202203006.
  • [17] Mao, L. et al. Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Adv. Mater. 34, 2206193 (2022). https://doi.org/10.1002/adma.202206193.
  • [18] Elsmani, M. I. et al. Recent issues and configuration factors in pero-vskite-silicon tandem solar cells towards large scaling production. Nanomaterials 11, 3186 (2021). https://doi.org/10.3390/nano11123186.
  • [19] Fu, F. et al. Monolithic perovskite-silicon tandem solar cells: from the lab to fab? Adv. Mater. 34, 2106540 (2022). https://doi.org/10.1002/adma.202106540.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5af85d0-fd4d-4332-baec-2dce56dd0d94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.