Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an assessment of the influence of isometric rotation of the lower limb in a standing position on the functioning of the muscles stabilizing the knee joint in the frontal plane with the use of modeling the loads on the musculoskeletal system. Methods: The research was carried out in the AnyBody Modeling System software, performing multi-variant simulations of the musculoskeletal system during isometric rotation of the lower limbs. The simulations were carried out using as input data the values of rotating moments and the ground reaction forces acting on foot segments, which were measured using the proprietary Rotenso device and the position of the body segments. Results: The result is the muscular activity of the lower limbs of the selected muscle groups during isometric rotation. Muscle activity was recorded for Sartorius, Tensor fasciae latae, Iliopsoas, Gluteus minimus, Gluteus medius, Gluteus maximus, Piriformis, Quadratus femoris, Obturator internus, Obturator externus, Gemellus inferior, Gemellus superior. Conclusions: Performing isometric rotation allowed for the activation of most of the knee joint stabilizing muscles and rotators of the lower limb. The results indicate that lower limb rotation exercises can be used in physiotherapy in patients with valgus knee.
Czasopismo
Rocznik
Tom
Strony
139--146
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland.
autor
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland.
autor
- Laboratory of Physiotherapy and Physioprevention, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland.
autor
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland.
autor
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland.
autor
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland.
autor
- Department of Medical Informatics and Artificial Intelligence, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland.
Bibliografia
- [1] ABULHASAN J.F., GREY M.J., Anatomy and physiology of knee stability, J. Funct. Morphol. Kinesiol., 2017, DOI: 10.3390/jfmk2040034.
- [2] BAJELAN S., AZGHANI M.R., Musculoskeletal modeling and simulation of three various Sit-to-Stand strategies: An evaluation of the biomechanical effects of the chair-rise strategy modification, Technol. Heal. Care, 2014, 22, 627–644, DOI: 10.3233/THC-140834.
- [3] BŁAŻKIEWICZ M., Joint loads and muscle force distribution during classical and jazz pirouettes, Acta Bioeng. Biomech., 2021, 23, 3–13, DOI: 10.37190/ABB-01675-2020-02.
- [4] CHRZAN M., MICHNIK R., BIENIEK A., WODARSKI P., Determination of the loads of the musculoskeletal system of the upper limb while walking with crutches, Model. Inżynierskie, 2018, 69, 17–22
- [5] CHRZAN M., MICHNIK R., BIENIEK A., WODARSKI P., MYŚLIWIEC A., Evaluation of muscle activity of the lower limb during isometric rotation based on measurements using a dynamometric and dynamographic platform, Adv. Intell. Syst. Comput., 2019, DOI: 10.1007/978-3-030-23762-2_50.
- [6] CIBULKA M.T., STRUBE M.J., MEIER D., SELSOR M., WHEATLEY C., WILSON N.G. et al., Symmetrical and asymmetrical hip rotation and its relationship to hip rotator muscle strength, Clin. Biomech., 2010, 25, 56–62, DOI: 10.1016/j.clinbiomech.2009.09.006.
- [7] CLAIBORNE T.L., ARMSTRONG C.W., GANDHI V., PINCIVERO D.M., Relationship between hip and knee strength and knee valgus during a single leg squat, J. Appl. Biomech., 2006, DOI: 10.1123/jab.22.1.41.
- [8] FREDERICSON M., COOKINGHAM C.L., CHAUDHARI A.M., DOWDELL B.C., OESTREICHER N., SAHRMANN S.A., Hip abductor weakness in distance runners with iliotibial band syndrome, Clin. J. Sport Med., 2000, DOI: 10.1097/00042752-200007000-00004.
- [9] HAMILL J., KNUTZEN K.M., DERRICK T.R., Biomechanical Basis of Human Movement, 4th ed., Lippincott Williams & Wilkins, Philadelphia, 2016.
- [10] HEWETT T.E., MYER G.D., FORD K.R., Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors, Am. J. Sports Med., 2006, DOI: 10.1177/0363546505284183.
- [11] HUG F., Can muscle coordination be precisely studied by surface electromyography?, J. Electromyogr. Kinesiol., 2011, 21, 1–12, DOI: 10.1016/j.jelekin.2010.08.009.
- [12] HUNT M.A., FOWLER P.J., BIRMINGHAM T.B., JENKYN T.R., GIFFIN J.R., Foot rotational effects on radiographic, 2006, 49, 401–406.
- [13] JOHNSON S., HOFFMAN M., Isometric Hip-Rotator Torque Production at Varying Degrees of Hip Flexion, J. Sport Rehabil., 2010, 19, 12–20, DOI: 10.1123/jsr.19.1.12.
- [14] JOSZKO K., GZIK M., WOLAŃSKI W., GZIK-ZROSKA B., KAWLEWSKA E., Biomechanical evaluation of human lumbar spine in spondylolisthesis, J. Appl. Biomed., 2018, 16, 51–58, DOI: 10.1016/j.jab.2017.10.004.
- [15] LETAFATKAR A., HATEFI M., BABAKHANI F., ABBASZADEH GHANATI H., WALLACE B., The influence of hip rotations on muscle activity during unilateral weight-bearing exercises in individuals with and without genu varum: A cross-sectional study, Phys. Ther. Sport, 2020, 43, 224–229, DOI: 10.1016/j.ptsp.2020.03.009.
- [16] LEWEK M.D., RAMSEY D.K., SNYDER-MACKLER L., RUDOLPH K.S., Knee stabilization in patients with medial compartment knee osteoarthritis, Arthritis Rheum., 2005, 52, 2845–2853, DOI: 10.1002/art.21237.
- [17] LUBAHN A.J., KERNOZEK T.W., TYSON T.L., MERKITCH K.W., REUTEMANN P., CHESTNUT J.M., Hip muscle activation and knee frontal plane motion, Int. J. Sports Phys. Ther., 2011, 6, 92–103.
- [18] MELIŃSKA A., CZAMARA A., SZUBA Ł., BĘDZIŃSKI R., Biomechanical characteristics of the jump down of healthy subjects and patients with knee injuries, Acta Bioeng. Biomech., 2015, 17, 111–120, DOI: 10.5277/ABB-00208-2014-04.
- [19] MENDONÇA L.D.M., BITTENCOURT N.F.N., FREIRE R.L., CAMPOS V.C., FERREIRA T.V., SILVA P.L., Hip external rotation isometric torque for soccer, basketball, and volleyball athletes: normative data and asymmetry index, Brazilian J. Phys. Ther., 2022, 26, 0–5, DOI: 10.1016/j.bjpt.2022.100391.
- [20] MACIAŁCZYK-PAPROCKA K., Epidemiologia wad postawy u dzieci i młodzieży, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, 2013.
- [21] MICHNIK R., CHRZAN M., WODARSKI P., BIENIEK A., NOWAKOWSKA K., POLLAK A. et al., Research on the stability of the users of chair with a spherical base, Adv. Intell. Syst. Comput., 2018, 623, 299–307, DOI: 10.1007/978-3-319-70063-2_32.
- [22] MICHNIK R., ZADOŃ H., NOWAKOWSKA-LIPIEC K., JOCHYMCZYK-WOŹNIAK K., MYŚLIWIEC A., MITAS A.W., The effect of the pelvis position in the sagittal plane on loads in the human musculoskeletal system, Acta Bioeng. Biomech., 2020, 22, 33–42, DOI: 10.37190/ABB-01606-2020-02.
- [23] MOORE D., SEMCIW A.I., WISBEY-ROTH T., PIZZARI T., Adding hip rotation to therapeutic exercises can enhance gluteus medius and gluteus minimus segmental activity levels – An electromyography study, Phys. Ther. Sport, 2020, 43, 157–165, DOI: 10.1016/j.ptsp.2020.02.017.
- [24] NOWAKOWSKA-LIPIEC K., MICHNIK R., LINEK P., MYŚLIWIEC A., JOCHYMCZYK-WOŹNIAK K., GZIK M., A numerical study to determine the effect of strengthening and weakening of the transversus abdominis muscle on lumbar spine loads, Comput. Methods Biomech. Biomed. Engin., 2020, 23, 1287–1296, DOI: 10.1080/10255842.2020.1795840.
- [25] NOWAKOWSKA K., MICHNIK R., MYŚLIWIEC A., CHRZAN M., Impact of strengthening of the erector spinae muscle on the values of loads of the muskuloskeletal system in the lumbar spine section, Engineering Mechanics, 2017, Book of Full Texts, 2017.
- [26] URITANI D., FUKUMOTO T., Differences of Isometric Internal and External Hip Rotation Torques among Three Different Hip Flexion Positions, J. Phys. Ther. Sci., 2012, 24, 863–865, DOI: 10.1589/jpts.24.863.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5ae7b69-dd20-47da-ac60-3ab08d2ee5fa