PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural characteristic of vanadium(V) oxide/sulfur composite cathode for magnesium battery applications

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Magnesium batteries are regarded as promising candidates for energy storage devices owing to their high volumetric capacity. The practical application is hindered, however, by strong electrostatic interactions between Mg2+ and the host lattice and due to the formation of a passivation layer between anode and electrolyte. V2O5is a typical intercalation compound with a layered crystal structure ((0 0 1) interlayer spacing ~ 11.53 Å), which can act as a good host for the reversible insertion and extraction of multivalent cations. Herein, we have presented an investigation of the effects of S injection on the structure, electrochemical performance and Mg2+ diffusion in V2O5 cathode materials for Mg-ion batteries. The V2O5/S composite structure was investigated using X-ray diffraction, field-emission scanning electron microscope and energy dispersive X-ray spectroscopy. The integrated electrode exhibits an improvement in the electrical and electrochemical properties compared to the V2O5 electrode. The as-prepared V2O5/S composite has an initial discharge capacity of 310 mAh∙g−1 compared to 160 mAh∙g−1 for the V2O5 electrode. The V2O5 /S composite is a promising cathode material for magnesium-ion battery applications.
Słowa kluczowe
Wydawca
Rocznik
Strony
570--576
Opis fizyczny
Bibliogr. 29 poz., tab., rys.
Twórcy
autor
  • Physics Department, Faculty of Science, Benha University, Benha, Egypt
autor
  • Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
Bibliografia
  • [1] SON S.-B., GAO T., HARVEY S.P., STEIRER K.X., STOKES A., NORMAN A., WANG C., CRESCE A., XU K., BAN C., Nat. Chem., 1 (2018) 1.
  • [2] AURBACH D., LU Z., SCHECHTER A., GOFER Y., GIZBAR H., TURGEMAN R., COHEN Y., MOSHKOVICH M., LEVI E., Nature, 407 (6805) (2000), 724.
  • [3] AURBACH D., SURESH G.S., LEVI E., MITELMAN A., MIZRAHI O., CHUSID O., BRUNELLI M.,Adv. Mater., 19 (23) (2007), 4260.
  • [4] XU M., LEI S., QI J., DOU Q., LIU L., LU Y.,HUANG Q., SHI S., YAN X., ACS Nano, 12 (2018),3733.
  • [5] BHANDAVAT R., DAVID L., SINGH G., J. Phys. Chem. Lett., 3 (11) (2012), 1523.
  • [6] CANEPA P., GAUTAM G.S., HANNAH D.C., MALIK R., LIU M., GALLAGHER K.G., PERSSON K.A., CEDER G., Chem. Rev., 117 (5) (2017), 4287.
  • [7] GERSHINSKY G., YOO H.D., GOFER Y., AURBACH D., Langmuir, 29 (34) (2013), 10964.
  • [8] GREGORY T.D., HOFFMAN R.J., WINTERTON R.C., J. Electrochem. Soc., 137 (3) (1990), 775.
  • [9] MATSUI M., J. Power Sources, 196 (16) (2011), 7048.
  • [10] MITELMAN A., LEVI E., LANCRY E., AURBACH D., ECS T., 3 (27) (2007), 109.
  • [11] NOVÁK P., IMHOF R., HAAS O., Electrochim. Acta, 45 (1 – 2) (1999), 351.
  • [12] NULI Y., YANG J., LI Y., WANG J., Chem. Commun., 46 (21) (2010), 3794.
  • [13] SEH Z.W., SUN Y., ZHANG Q., CUI Y., Chem. Soc. Rev., 45 (20) (2016), 5605.
  • [14] SHTERENBERG I., SALAMA M., GOFER Y., LEVI E., AURBACH D., MRS Bull., 39 (5) (2014), 453.
  • [15] SONG J., SAHADEO E., NOKED M., LEE S.B., J. Phys. Chem. Lett., 7 (9) (2016), 1736.
  • [16] WHITTINGHAM M.S., Chem. Rev., 104 (10) (2004),4271.
  • [17] YOO H.D., SHTERENBERG I., GOFER Y., GERSHINSKY G., POUR N., AURBACH D., Energ. Environ. Sci., 6 (8) (2013), 2265.
  • [18] ZHANG R., YU X., NAM K.-W., LING C., ARTHUR T.S., SONG W., KNAPP A.M., EHRLICH S.N., YANG X.-Q., MATSUI M., Electrochem. Commun., 23 (2012), 110.
  • [19] SHEHA E., EL-DEFTAR M., J. Solid State Electr., 22 (9) (2018), 1.
  • [20] DROSOS C., JIA C., MATHEW S., PALGRAVE R.G., MOSS B., KAFIZAS A., VERNARDOU D., J. PowerSources, 384 (2018), 355.
  • [21] LONDERO E., SCHRÖDER E., Phys. Rev. B, 82 (5) (2010), 054116.
  • [22] WANG Y., CAO G., Chem. Mater., 18 (12) (2006), 2787.
  • [23] TANG H., PENG Z., WU L., XIONG F., PEI C., AN Q., MAI L., Electrochem. Energ. Rev., 1 (2) (2018), 169.
  • [24] SU D., DOU S., WANG G., J. Mater. Chem. A, 2 (29) (2014), 11185.
  • [25] JIA M.-Y., XU B., DENG K., HE S.-G., GE M.-F., J. Phys. Chem. A, 118 (37) (2014), 8106.
  • [26] ZHAO-KARGER Z., ZHAO X., WANG D., DIEMANTT., BEHM R.J., FICHTNER M., Adv. Energ. Mater., 5 (3) (2015), 1401155.
  • [27] VINAYAN B., ZHAO-KARGER Z., DIEMANT T., CHAKRAVADHANULA V.S.K., SCHWARZBURGER N.I., CAMBAZ M.A., BEHM R.J., KÜBEL C., FICHTNER M., Nanoscale, 8 (6) (2016), 3296.
  • [28] LIU C., WANG X., DENG W., LI C., CHEN J., XUE M., LI R., PAN F., Angew. Chem. Int. Edit., 57 (24) (2018), 7046.
  • [29] GHORBANZADEH M., FARHADI S., RIAHIFAR R., HADAVI S., New J. Chem., 42 (40) (2018), 1.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5ae4cbb-327e-4481-ba66-7ac41256985f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.