PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mesoarchean melt and fluid inclusions in garnet from the Kangerlussuaq basement, Southeast Greenland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work reports the first anatectic melt inclusions found so far in the Mesoarchean basement in East Greenland. Using optical microscope observations and MicroRaman spectroscopy, we show that garnets in metasedimentary migmatite contain primary polycrystalline aggregates which can be confidently interpreted as former droplets of anatectic melt, i.e. nanogranitoids. In some cases, they coexist with coeval fluid inclusions under conditions of primary fluid-melt immiscibility. The re-evaluation of the metamorphic pressure and temperature conditions with up-to-date phase equilibria modelling, combined with the identification of nanogranitoids and fluid inclusions, suggests metamorphic peak equilibration and partial melting in presence of a COH-fluid at T ~1000°C and P > 7 kbar. To date, this is the oldest verified occurrence of nanogranitoids and fluid-melt immiscibility during garnet growth in a partially molten environment.
Słowa kluczowe
Czasopismo
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Universität Potsdam, Institut für Geowissenschaften, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
  • Universität Potsdam, Institut für Geowissenschaften, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
  • Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato S.S. 554 Bivio Sestu, 09042 Monserrato, Italy
Bibliografia
  • Bartoli, O., Acosta-Vigil, A., Ferrero, S., & Cesare, B. (2016). Granitoid magmas preserved as melt inclusions in high-grade metamorphic rock. American Mineralogist, 101(7), 1543-1559. https://doi.org/10.2138/am-2016-5541CCBYNCND
  • Bufe, N. A., Holness, M. B., & Humphreys, M. C. (2014). Contact metamorphism of Precambrian gneiss by the Skaergaard Intrusion. Journal of Petrology, 55(8), 1595-1617. https://doi.org/10.1093/petrology/egu035
  • Carvalho, B. B., Bartoli, O., Ferri, F., Cesare, B., Ferrero, S., Remusat, L., ... & Poli, S. (2019). Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy). Journal of Metamorphic Geology, 37(7), 951-975. https://doi.org/10.1111/jmg.12463
  • Carvalho, B. B., Bartoli, O., Cesare, B., Tacchetto, T., Gianola, O., Ferri, F., ... & Szabó, C. (2020). Primary CO2-bearing fluid inclusions in granulitic garnet usually do not survive. Earth and Planetary Science Letters, 536, 116170. https://doi.org/10.1016/j.epsl.2020.116170
  • Cesare, B., Acosta-Vigil, A., Bartoli, O., & Ferrero, S. (2015). What can we learn from melt inclusions in migmatites and granulites?. Lithos, 239, 186-216. https://doi.org/10.1016/j.lithos.2015.09.028
  • Cesare, B., Maineri, C., Toaldo, A. B., Pedron, D., & Vigil, A. A. (2007). Immiscibility between carbonic fluids and granitic melts during crustal anatexis: A fluid and melt inclusion study in the enclaves of the Neogene Volcanic Province of SE Spain. Chemical Geology, 237, 433–449. https://doi.org/10.1016/j.chemgeo.2006.07.013
  • Connolly, J. A. D. (2009). The geodynamic equation of state: what and how. Geochemistry, Geophysics, Geosystems, 10(10). https://doi.org/10.1029/2009GC002540
  • Dhuime, B., Hawkesworth, C. J., Delavault, H., & Cawood, P. A. (2018). Rates of generation and destruction of the continental crust: implications for continental growth. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2132), 20170403. https://doi.org/10.1098/rsta.2017.0403
  • Ferrero, S., Ague, J. J., O’Brien, P. J., Wunder, B., Remusat, L., Ziemann, M. A., & Axler, J. (2021a). High-pressure, halogen-bearing melt preserved in ultrahigh-temperature felsic granulites of the Central Maine Terrane, Connecticut (USA). American Mineralogist, 106(8), 1225-1236. https://doi.org/10.2138/am-2021-7690
  • Ferrero, S., Braga, R., Berkesi, M., Cesare, B., & Laridhi Ouazaa, N. (2014). Production of metaluminous melt during fluid‐present anatexis: an example from the Maghrebian basement, La Galite Archipelago, central Mediterranean. Journal of Metamorphic Geology, 32(2), 209-225. https://doi.org/10.1111/jmg.12068
  • Ferrero, S., Wannhoff, I., Laurent, O., Yakymchuk, C., Darling, R., Wunder, B., ... & O’Brien, P. J. (2021b). Embryos of TTGs in Gore Mountain garnet megacrysts from water-fluxed melting of the lower crust. Earth and Planetary Science Letters, 569, 117058. https://doi.org/10.1016/j.epsl.2021.117058
  • Ferrero, S., Wunder, B., Ziemann, M. A., Wälle, M., & O’Brien, P. J. (2016). Carbonatitic and granitic melts produced under conditions of primary immiscibility during anatexis in the lower crust. Earth and Planetary Science Letters, 454, 121-131. https://doi.org/10.1016/j.epsl.2016.08.043
  • Fuhrman, M. L., & Lindsley, D. H. (1988). Ternary-feldspar modeling and thermometry. American Mineralogist, 73(3-4), 201-215.
  • Gianola, O., Bartoli, O., Ferri, F., Galli, A., Ferrero, S., Capizzi, L. S., ... & Cesare, B. (2021). Anatectic melt inclusions in ultra high temperature granulites. Journal of Metamorphic Geology, 39(3), 321-342. https://doi.org/10.1111/jmg.12567
  • Holland, T. J. B., & Powell, R. T. J. B. (1998). An internally consistent thermodynamic data set for phases of petrological interest. Journal of metamorphic Geology, 16(3), 309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
  • Holwell, D. A., Jenkin, G. R. T., Butterworth, K. G., Abraham-James, T., & Boyce, A. J. (2013). Orogenic gold mineralisation hosted by Archaean basement rocks at Sortekap, Kangerlussuaq area, East Greenland. Mineralium Deposita, 48(4), 453-466. https://doi.org/10.1007/s00126-012-0434-3
  • Kays, M. A., Goles, G. G., & Grover, T. W. (1989). Precambrian sequence bordering the Skaergaard Intrusion. Journal of Petrology, 30(2), 321-361. https://doi.org/10.1093/petrology/30.2.321
  • Kirkland, C. L., Yakymchuk, C., Hollis, J., Heide-Jørgensen, H., & Danišík, M. (2018). Mesoarchean exhumation of the Akia terrane and a common Neoarchean tectonothermal history for West Greenland. Precambrian Research, 314, 129-144.
  • Kretz, R. (1983). Symbols for rock-forming minerals. American Mineralogist, 68(1-2), 277-279.
  • Leeman, W. P., Dasch, E. J., & Kays, M. A. (1976). 207Pb/206Pb whole-rock age of gneisses from the Kangerdlugssuaq area, eastern Greenland. Nature, 263(5577), 469-471.
  • Nicoli, G., & Ferrero, S. (2021). Nanorocks, volatiles and plate tectonics. Geoscience Frontiers, 12(5), 101188. https://doi.org/10.1016/j.gsf.2021.101188
  • Nicoli, G., Thomassot, E., Schannor, M., Vezinet, A., & Jovovic, I. (2018). Constraining a Precambrian Wilson Cycle lifespan: an example from the ca. 1.8 Ga Nagssugtoqidian Orogen, Southeastern Greenland. Lithos, 296, 1-16. https://doi.org/10.1016/j.lithos.2017.10.017
  • Nicoli, G., Moyen, J. F., & Stevens, G. (2016). Diversity of burial rates in convergent settings decreased as Earth aged. Scientific Reports, 6(1), 1-10. doi: 10.1038/srep26359
  • Palin, R. M., Santosh, M., Cao, W., Li, S. S., Hernández-Uribe, D., & Parsons, A. (2020). Secular change and the onset of plate tectonics on Earth. Earth-Science Reviews, 207, 103172. https://doi.org/10.1016/j.earscirev.2020.103172
  • Tacchetto, T., Bartoli, O., Cesare, B., Berkesi, M., Aradi, L. E., Dumond, G., & Szabó, C. (2019). Multiphase inclusions in peritectic garnet from granulites of the Athabasca granulite terrane (Canada): Evidence of carbon recycling during Neoarchean crustal melting. Chemical Geology, 508, 197-209. https://doi.org/10.1016/j.precamres.2021.106139
  • Thrane, K. (2021). The oldest part of the Rae craton identified in western Greenland. Precambrian Research, 357, 106139. https://doi.org/10.1016/j.precamres.2021.106139
  • Wager, L. R. (1934). Geological Investigations in East Greenland. (Vol. 105, No. 2-3). CA Reitzels forlag.
  • Wager, L. R., & Deer, W. A. (1939). Geological investigations in East Greenland, Part IV. Medde lelser om Grønland, 134(5).
  • White, R. W., Powell, R., & Clarke, G. L. (2002). The interpretation of reaction textures in Fe‐rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. Journal of metamorphic Geology, 20(1), 41-55. https://doi.org/10.1046/j.0263-4929.2001.00349.x
  • White, R. W., Powell, R. Holland, T. J. B., Johnson, T. E., & Green, E. C. R. (2014). New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3), 261-286. https://doi.org/10.1111/jmg.12071
  • Yakymchuk, C., Kirkland, C. L., Hollis, J. A., Kendrick, J., Gardiner, N. J., & Szilas, K. (2020). Mesoarchean partial melting of mafic crust and tonalite production during high-T–low-P stagnant tectonism, Akia Terrane, West Greenland. Precambrian Research, 339, 105615. https://doi.org/10.1016/j.precamres.2020.105615
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5a7c944-a17f-4173-8779-d46c58faf139
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.