Identyfikatory
Warianty tytułu
Zagrożenia CBRN – wzmacnianie bezpieczeństwa narodowego poprzez interdyscyplinarne innowacje: analityczne ramy dla technologii wykrywania zagrożeń chemicznych
Języki publikacji
Abstrakty
In the contemporary era, the increasing complexities in national security necessitate the continuous evolution within the sphere of chemical, biological, radiological, and nuclear (CBRN) threat detection. This study presents a detailed analysis of the interdisciplinary technologies pivotal to chemical hazard detection systems, thereby offering an analytical framework to enhance national security strategies. The authors examine the fundamental principles of standoff and point detectors, focusing on their role in safeguarding first responders in civilian contexts. Furthermore, the intricacies of current technologies were explored, highlighting their functionalities and inherent limitations. This research aims to pinpoint optimal technologies that meet the stringent demands of national security, facilitating a resilient response mechanism to chemical threats. By fostering interdisciplinary collaboration, this study contributes significantly towards building a fortified national security framework, adept at navigating the complex and evolving threat dynamics.
W współczesnej erze rosnące złożoności w zakresie bezpieczeństwa narodowego wymagają ciągłego rozwoju w sferze wykrywania zagrożeń chemicznych, biologicznych, radiologicznych i jądrowych (CBRN). Niniejszy artykuł przedstawia szczegółową analizę interdyscyplinarnych technologii kluczowych dla systemów wykrywania zagrożeń chemicznych, oferując tym samym analityczne ramy do wzmocnienia strategii bezpieczeństwa narodowego. Autor badań skupił się na zasadniczych zasadach działania detektorów stacjonarnych i przenośnych, koncentrując się na ich roli w ochronie pierwszych reagujących w kontekstach cywilnych. Ponadto przeanalizował złożoności obecnych technologii, podkreślając ich funkcjonalności i wrodzone ograniczenia. Celem tego badania było wskazanie optymalnych technologii, które spełniają rygorystyczne wymagania bezpieczeństwa narodowego, ułatwiając elastyczną reakcję na zagrożenia chemiczne. Poprzez wspieranie współpracy interdyscyplinarnej to badanie znacząco przyczynia się do budowy wzmocnionych ram bezpieczeństwa narodowego, zdolnego do nawigacji w skomplikowanej i ewoluującej dynamice zagrożeń.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
93--118
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
Bibliografia
- 1. Ballantine, D.S., White, R.M., Martin, S.J., Ricco, A.J., Zellers, E.T., Frye, G.C., Wohltjen, H., (1987). Acoustic wave sensors: Theory, design, and physicochemical applications. Academic Press.
- 2. Banga, I., Paul, A., Poudyal, D.C., Muthukumar, S., Prasad, S., (2023). Recent advances in gas detection methodologies with a special focus on environmental sensing and health monitoring applications – a critical review. ACS Sensors, 8 (9), 3307–3319.
- 3. Bard, A.J. & Faulkner, L.R., (2022). Electrochemical methods: fundamentals and applications. John Wiley & Sons.
- 4. Baumbach, J.I. & Jung, J., (2009). Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath. Journal of Breath Research, 3(3), 034001.
- 5. Born, M. & Wolf, E., (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press.
- 6. Campbell, C.K., (2003). Surface acoustic wave devices for mobile and wireless communications. Academic Press.
- 7. Chen, Z., Xiong, S., Gao, S., Zhang, H., Wan, L., Huang, X., Huang, B., Feng, Y., Liu, W., Li, Z., (2018). High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip. Sensors, 18, 202.
- 8. Cheng, Y. et al., (2011). Bayesian Estimation for CBRN Sensors with Non-Gaussian Likelihood. Aerospace and Electronic Systems, IEEE Transactions on 47.1: 684–701.
- 9. Coates, J., (2006). Interpretation of Infrared Spectra, A Practical Approach. John Wiley & Sons.
- 10. Compton, R.G. & Banks, C.E., (2018). Understanding Voltammetry. World Scientific.
- 11. Cull, E.C., M.E. Gehm, B.D. Guenther & Brady, D.J., (2005). Standoff raman spectroscopy system for remote chemical detection, Chemical and Biological Sensors for Industrial and Environmental Security, 5994.
- 12. Dean, J.R., (1999). Atomic absorption and plasma spectroscopy. John Wiley & Sons.
- 13. Eiceman, G.A., Karpas, Z., & Hill Jr, H.H., (2013). Ion mobility spectrometry. CRC press.
- 14. Fang, X., Hsiao, K.S., Chodavarapu, V.P., Titus, A. H., Cartwright, A., (2006). Colorimetric porous photonic bandgap sensors with integrated CMOS color detectors. IEEE Sensors Journal, vol. 6, no. 3, 661–667.
- 15. Ferraro, J.R. and Nakamoto, K., Brown, C.W., (1994). Introductory Raman Spectroscopy. San Diego: Academic Press, Inc.
- 16. Forbes, T.P., Lawrence, J., Hao, C., & Gillen, G., (2021). Open port sampling interface mass spectrometry of wipe-based explosives, oxidizers, and narcotics for trace contraband detection. Analytical methods: advancing methods and applications, 13(31), 3453–3460.
- 17. García-Berná, J.A., Ouhbi, S., Benmouna, B., García-Mateos, G., Fernández-Alemán, J.L., Molina-Martínez, J.M., (2020). Systematic Mapping Study on Remote Sensing in Agriculture. Applied Sciences, 10(10), 3456.
- 18. Griffiths, P.R., (1983). Fourier Transform Infrared Spectrometry. Science, 222, 297–302.
- 19. Guevremont, R., (2004). High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. Journal of Chromatography A, 1058(1–2), 3–19.
- 20. Hariharan, P., (2007). Basics of Interferometry, Second Edition. Academic Press.
- 21. Harris, D.C., & Bertolucci, M.D., (1999). Symmetry and spectroscopy: An introduction to vibrational and electronic spectroscopy. Dover Publications.
- 22. Hollas, J.M., (2004). Modern spectroscopy. Wiley.
- 23. Lewis, I.R. and Edwards, H., (2001). Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line. New York: Marcel Dekker, Inc.
- 24. March, R.E., & Hughes, R.J., (2009). Quadrupole storage mass spectrometry. Wiley- Interscience.
- 25. Martin, S.J., Frye, G.C., Senturia, S.D., (1991). Dynamics and response of polymercoated surface acoustic wave devices: effect of viscoelastic properties and film resonance. Analytical Chemistry, 66, 2201–2219.
- 26. McLafferty, F.W., & Tureček, F., (1993). Interpretation of mass spectra. University Science Books.
- 27. Mitschke, S., Welthagen, W., Zimmermann, R., (2006). Comprehensive Gas Chromatography− Time-of-Flight Mass Spectrometry Using Soft and Selective Photoionization Techniques. Anal. Chem., 78, 18, 6364–6375.
- 28. Moshiri, M., Darchini-Maragheh, E., Balali-Mood, M., (2012). Advances in toxicology and medical treatment of chemical warfare nerve agents. Daru: Journal of Faculty of Pharmacy, 20(1).
- 29. National Research Council, (2003). Testing and Evaluation of Standoff Chemical Agent Detectors. Washington, DC: The National Academies Press.
- 30. National Research Council, (2004). Naval Forces’ Defense Capabilities Against Chemical and Biological Warfare Threats. Washington, DC: The National Academies Press.
- 31. National Research Council, (2005). Sensor Systems for Biological Agent Attacks: Protecting Buildings and Military Bases. National Academies Press.
- 32. Ohhira, S., Matsui, H., (1991). Comparison of sulphur-mode and tin-mode flame photometric detectors for the gas chromatographic determination of organotin compounds, Journal of Chromatography B: Biomedical Sciences and Applications, Vol. 566, Issue 1, 207–214.
- 33. Pohl, A., (2000). A review of wireless SAW sensors. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
- 34. Rentz, J., Schwarze, C.R., Vaillancourt R.M. and Hercher, M., (2004). Standoff Raman measurement with COTS components. Topsfield: OPTRA.
- 35. Seeley, J.A. and Richardson, J.M., (2007). Early Warning Chemical Sensing, Lincoln Laboratory Journal, 17, 1, 85–99.
- 36. Sferopoulos, R., (2008). A Review of Chemical Warfare Agent (CWA) Detector Technologies and Commercial-Off-The-Shelf Items.
- 37. Smith, B.C., (2011). Fundamentals of Fourier Transform Infrared Spectroscopy. Boca Raton: CRC Press.
- 38. Smith, B.C., (1999). Infrared spectral interpretation: A systematic approach. Boca Raton: CRC Press.
- 39. Szklarski, Ł., (2023). CBRN Threats To Ukraine During The Russian Aggression: Mitigating Gamma Radiation Hazards-Innovative Countermeasures And Decontamination Strategies In The Context Of Potential Destruction Of The Zaporizhzhia Nuclear Power Plant; ZN SGSP, 87, 143–164.
- 40. Sun, D-W, (2009). Infrared Spectroscopy for food quality: Analysis and Control. London: Elsevier Inc.
- 41. Sundarajoo, S., (2012). Deep Raman Spectroscopy in the Analytical Forensic Investigation of Concealed Substances. Queensland University of Technology.
- 42. Smith, W., & Dent, G., (2005). Modern Raman Spectroscopy: A Practical Approach. John Wiley & Sons.
- 43. Stuart, B., (2004). Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons.
- 44. Sedwick, V., Massey, M., Codio, T. et al., (2017). Method validation parameters for drugs and explosives in ambient pressure ion mobility spectrometry. Int. J. Ion Mobil. Spec., 20, 75–86.
- 45. Szklarski, Ł., (2023). CBRN threats to Ukraine during the Russian aggression: mitigating chemical hazards during wartime – countermeasures and decontamination strategies for Ukraine in light of potential chemical facility destruction. ZN SGSP, 87, 165–180.
- 46. Stein, S.E., (2012). Mass spectral reference libraries: an ever-expanding resource for chemical identification. Analytical Chemistry, 84(17).
- 47. Vandenabeele, P., (2010). Raman spectroscopy, Springer-Verlag, 12 Jun 2010.
- 48. Peng, F.M., Xie, P.H., Shi, Y.G. et al., (2007). Photoionization Detector for Portable Rapid GC. Chroma, 65, 331–336.
- 49. Wohltjen, H., Dessy, R., (1979). Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description. Analytical Chemistry, 51, 9, 1458–1464.
- 50. Siesler, H.W., Ozaki, Y., Kawata, S., Heise H.M., (2008). Near-Infrared Spectroscopy: Principles, Instruments, Applications. Wiley & Sons.
- 51. Yagmuroglu, O., Subasi, B., (2020). Nerve agents: chemıcal structures, effect mechanısms and detectıon methods. Open Access J Sci., 4(2), 47‒5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5a5b215-d9de-49c9-9a9b-0214d0277d78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.