PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detecting and estimating local corrosion damages in long-service aircraft structures by the eddy current method with double-differential probes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Monitoring corrosion in aircraft structures through nondestructive testing is crucial for maintaining long-term aircraft serviceability. Corrosion monitoring is particularly challenging when corrosion damage is situated on internal surfaces of multilayer aircraft structures. The eddy current method is one of the most promising techniques for detecting and measuring such subsurface corrosion damage without direct contact or disassembly. However, due to their low sensitivity traditional eddy current probes with coaxial coils are not well suited for detecting corrosion damages of the local type, such as pitting or corrosion pits, in multilayer aircraft structures. This study tested the use of low-frequency eddy current probes of the double-differential type, characterized by 8 and 10 mm operational diameters, in detecting and measuring hidden corrosion damages of this local type. Such corrosion damages were simulated by means of flat-bottomed drilled holes of differing diameters and depths (or different diameters and residual thicknesses of the inspected sheet in the damaged area). The signals from the eddy current probes were evaluated in the complex plane using a universal eddy current flaw detector. The correlations between the amplitude and phase of the eddy current signal and depth of location of the local corrosion damages were analyzed. Results indicate that it is possible to estimate the residual thickness of the skin in locally corroded areas by measuring the eddy current signal phase, independently of the local corrosion damage diameter (size), providing useful information for residual service life determination.
Rocznik
Strony
20--32
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Karpenko Physico-Mechanical Institute of National Academy of Sciences of Ukraine Naukova str. 5, Lviv, Ukraine, 79060
Bibliografia
  • [1] Czaban M. Aircraft Corrosion - Review of Corrosion Processes and its Effects in Selected Cases. Fatigue of Aircraft Structures. 2018;10:5-20. Available from: https://doi.org/10.2478/fas-2018-0001
  • [2] Abolikhina EV., Molyar AG. Corrosion of Aircraft Structures Made of Aluminum Alloys. Materials Science. 2003;39(6):889-94. Available from: https://doi.org/10.1023/b:masc.0000031656.94285.4c
  • [3] Ostash OP., Fedirko VM., Uchanin VM., editors. Mekhanika ruynuvannya ta mitsnist materialiv [Fracture mechanics and strength of materials]. Vol. 9, Strength and durability of airplane materials and structural elements. Lviv: Spolom; 2007. (in Ukrainian)
  • [4] Howard M., Mitchell G. Nondestructive Inspection for Hidden Corrosion in the US Air Force Aircraft Lap Joints: Test and Evaluation of Inspection Procedures. In: Chang C, Sun C, editors. Structural Integrity of Aging Aircraft. ASME; 1995.
  • [5] Katunin A., Lis K., Joszko K., Zak P., Dragan K. Quantification of hidden corrosion in aircraft structures using enhanced D-Sight NDT technique. Measurement. 2023;216:112977. Available from: https://doi.org/10.1016/j.measurement.2023.112977
  • [6] Roach D., Nelson C. Detection of Small Corrosion Levels in Multi-Layered Joints. 2007. Available from: https://www.osti.gov/servlets/purl/1148497
  • [7] Udpa SS., More PO., editors. Nondestructive testing handbook. 3rd ed. Vol. 5, Electromagnetic testing. American Society for NDT; 2004.
  • [8] International standard ISO 15548-2:2013. Non-destructive testing. Equipment for eddy current examination. Part 2: Probe characteristics and verification. 2nd ed. ISO technical committee TC135/SC4; 2013.
  • [9] Mitra S., Urali PS., Uzal E., Rose JH., Moulder JS. Eddy current measurements of corrosion-related thinning in aluminium lap splices. In: Thompson DO, Chimenti DE, editors. Review of Progress in Quantitative Nondestructive Evaluation. Vol. 12. Plenum Press; 1993. p. 2003-2010. Available from: https://doi.org/10.1007/978-1-4615-2848-7_257.
  • [10] Bond AR. Corrosion detection and evaluation by NDT. Brit Journ for Nondestructive Testing. 1975;17(2):46-52.
  • [11] Teterko A., Uchanin V., Makarov G., Zagatskii V. Determination of the degree of corrosion damage of articles made of nonmagnetic metals by an electromagnetic method. Materials Science. 1978;3:312-5.
  • [12] Uchanin V., Mok G. Vikhrostrumovyi kontrol koroziinykh poshkodzhen dvosharovykh aviatsiinykh konstruktsii [Eddy current testing of corrosion damages in double-layer aircraft structures]. Vol. 9. Physical methods and means for media, material and product inspection. Lviv; 2004, p. 113-22. (in Ukrainian)
  • [13] Komorowski JP., Forsyth DS., Simpson DL., Gould RW. Probability of Detection of Corrosion in Aircraft Structures. ATW Workshop Proc. “Airframe Inspection Reliability under Field/Depot conditions”. Brussels; 1998. p. 81-88.
  • [14] Smith RA. Fine-tuning the eddy current detection of hidden first-layer corrosion in aircraft skins. Insight: Nondestructive Testing and Condition Monitoring. 1998;40(10):712-21.
  • [15] Smith RA., Hugo GR. Transient eddy-current NDE for aging aircraft - Capabilities and limitations. Insight: Nondestructive Testing and Condition Monitoring. 2001;43(1):14-20.
  • [16] Spychalska J., Dragan K., Dziendzikowski M. Numerically Enhanced Eddy Current Inspection of Corrosion Losses of Aircraft Structures. 19th World Conf. on Non-Destructive Testing. Munich; 2016.
  • [17] Thompson JG. Subsurface Corrosion Detection in Aircraft Lap Splices Using a Dual Frequency Eddy Current Inspection Technique. Materials Evaluation. 1993; 51(12):1398-401.
  • [18] Plotnikov YA., Bantz WJ., Hansen JP. Enhanced Corrosion Detection in Airframe Structures Using Pulsed Eddy Current and Advanced Processing. Mat Eval. 2007;65(4):403-10.
  • [19] Knopp JS., Aldrin JC. Fundamental Feature Extraction Methods for the Analysis of Eddy Current Data. Air Force Research Laboratory Report AFRL-RX-WP-TP-2008-4041; 2006.
  • [20] Uchanin V., Tsirg V. Detection of hidden corrosion damage in aviation structures by the eddy current method. Materials Science. 1991;26(4):475
  • [21] Mook G., Hesse O., Uchanin V. Deep penetrating eddy currents and probes. Materials Testing. 2007;49(5):258-64.
  • [22] Uchanin V. Eddy current techniques for detecting hidden subsurface defects in multilayer aircraft structures. Trans Aerospace Res. 2022;267(2):69-79.
  • [23] Uchanin V. Surface eddy current probes of double differential type as an effective tool to solve non-destructive inspection problems. The Paton Welding J. 2023;2:46-55.
  • [24] Radchenko AI., Zaika AY., Sultanov AÉ. Determining the maximum value of various forms of corrosion of thin-walled parts made of D16T alloy. Mater Sci. 1981;16: 410-14.
  • [25] Radchenko AI., Sultanov AÉ. Investigation of the residual fatigue life of material D16 ATV under two-step, low-cycle program loading. Strength Mater. 1977;9:1312-15.
  • [26] Yu D., Chen Y., Duan C. Statistical study on corrosion damage distribution of aircraft structure based on neural network. J Chin Soc Corr Prot. 2006;26(1):19-21.
  • [27] Pidaparti RM., Jayanti S., Palakal MJ., Sowers CA. Classification, Distribution, and Fatigue Life of Pitting Corrosion for Aircraft Materials. J Aircraft. 2002;39(3): 486-92.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5a2630f-de6a-4364-a98a-444a6bfa3272
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.