PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-path convolutional neural network in fundus segmentation of blood vessels

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is a close correlation between retinal vascular status and physical diseases such as eye lesions. Retinal fundus images are an important basis for diagnosing diseases such as diabetes, glaucoma, hypertension, coronary heart disease, etc. Because the thickness of the retinal blood vessels is different, the minimum diameter is only one or two pixels wide, so obtaining accurate measurement results becomes critical and challenging. In this paper, we propose a new method of retinal blood vessel segmentation that is based on a multi-path convolutional neural network, which can be used for computer-based clinical medical image analysis. First, a low-frequency image characterizing the overall characteristics of the retinal blood vessel image and a high-frequency image characterizing the local detailed features are respectively obtained by using a Gaussian low-pass filter and a Gaussian high-pass filter. Then a feature extraction path is constructed for the characteristics of the low- and high-frequency images, respectively. Finally, according to the response results of the low-frequency feature extraction path and the high-frequency feature extraction path, the whole blood vessel perception and local feature information fusion coding are realized, and the final blood vessel segmentation map is obtained. The performance of this method is evaluated and tested by DRIVE and CHASE_DB1. In the experimental results of the DRIVE database, the evaluation indexes accuracy (Acc), sensitivity (SE), and specificity (SP) are 0.9580, 0.8639, and 0.9665, respectively, and the evaluation indexes Acc, SE, and SP of the CHASE_DB1 database are 0.9601, 0.8778, and 0.9680, respectively. In addition, the method proposed in this paper could effectively suppress noise, ensure continuity after blood vessel segmentation, and provide a feasible new idea for intelligent visual perception of medical images.
Twórcy
autor
  • Laboratory of Pattern Recognition and Image Processing, Hangzhou Dianzi University, Hangzhou, China
autor
  • Laboratory of Pattern Recognition and Image Processing, Hangzhou Dianzi University, Hangzhou, China
autor
  • Laboratory of Pattern Recognition and Image Processing, Hangzhou Dianzi University, Hangzhou 310018, China
autor
  • Laboratory of Pattern Recognition and Image Processing, Hangzhou Dianzi University, Hangzhou, China
Bibliografia
  • [1] Zhu CZ, Zou BJ, Zhao RC, Cui J, Duan X, Chen Z, et al. Retinal vessel segmentation in colour fundus images using extreme learning machine. Comput Med Imag Graph 2017; (55):68–77.
  • [2] Jiang ZX, Juan Y, Sen A, Seokbum K. Fast, accurate and robust retinal vessel segmentation system. Biocybern Biomed Eng 2017;37(3):412–21.
  • [3] Xie S, Nie H. Retinal vascular image segmentation using genetic algorithm plus fcm clustering. Third International Conference on Intelligent System Design & Engineering Applications; 2013.
  • [4] Chakraborti T, Jha DK, Chowdhury AS, Jiang X. A self-adaptive matched filter for retinal blood vessel detection. Mach Vis Appl 2015;26(1):55–68.
  • [5] Soomro TA, Khan TM, Khan MAU, Gao J, Paul M, Zheng L. Impact of ICA-based image enhancement technique on retinal blood vessels segmentation. IEEE Access 2018;3524–30.
  • [6] Vlachos M, Dermatas E. Multi-scale retinal vessel segmentation using line tracking. Comput Med Imag Graph 2010;34(3):213–27.
  • [7] Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, et al. An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 2012;59(9):2538–48.
  • [8] Al-Rawi M, Qutaishat M, Arrar M. An improved matched filter for blood vessel detection of digital retinal images. Comput Biol Med 2007;37(2):262–7.
  • [9] Yin Y, Adel M, Bourennane S. Retinal vessel segmentation using a probabilistic tracking method. Pattern Recogn 2012;45(4):1235–44.
  • [10] Kaba D, Salazar-Gonzalez AG, Li Y, Liu X, Serag A. Segmentation of retinal blood vessels using Gaussian mixture models and expectation maximisation. Lecture Notes Comput Sci 2013;7798:105–12.
  • [11] Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M. Detection of blood vessels in retinal images using two dimensional matched filters. IEEE Trans Med Imag 1989;8 (3):263–9.
  • [12] Roychowdhury S, Koozekanani DD, Parhi KK. Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J Biomed Health Inform 2014;19(3):1118–28.
  • [13] Zhang J, Dashtbozorg B, Bekkers E, Pluim JPW, Duits R, ter Haar Romeny BM. Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans Med Imag 2016;35(12):2631–44.
  • [14] Can A, Shen H, Turner JN, Tanenbaum HL, Roysam B. Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Trans Inform Technol Biomed 1999;3(2):125–38.
  • [15] Zhang J, Li H, Nie Q, Cheng L. A retinal vessel boundary tracking method based on Bayesian theory and multiscale line detection. Comput Med Imag Graph 2014;38(6):517–25.
  • [16] You XG, Peng MQM, Yuan Y, Cheung Y-M, Lei J. Segmentation of retinal blood vessels using the radial Gprojection and semi-supervised approach. Pattern Recogn 2011;44(10):2314–24.
  • [17] Franklin SW, Rajan SE. Computerized screening of diabetic retinopathy employing blood vessel segmentation in retinal images. Biocybern Biomed Eng 2014;34(2):117–24.
  • [18] Marin D, Aquino A, Gegundez-Arias ME, Bravo JM. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imag 2011;30(1):146–58.
  • [19] Li Q, Feng B, Xie LP, Liang P, Zhang H, Wang T. A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imag 2016;35(1):109–18.
  • [20] Memari N, Ramli AR, Saripan MIB, Mashohor S, Moghbel M. Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier. PLOS ONE 2017;12(12):e0188939.
  • [21] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 2014;39(4):640–51.
  • [22] Dai L, Fang R, Li HT, Hou X, Sheng B, Wu Q, et al. Clinical report guided retinal microaneurysm detection with multisieving deep learning. IEEE Trans Med Imag 2018;37 (5):1149–61.
  • [23] Ngo L, Han JH. Advanced deep learning for blood vessel segmentation in retinal fundus images. Fifth International Winter Conference on Brain–Computer Interface (BCI); 2017.
  • [24] Zilly JG, Buhmann JM, Mahapatra D. Boosting convolutional filters with entropy sampling for optic cup and disc image segmentation from fundus images. International Workshop on Machine Learning in Medical Imaging (MICCAI) 2015;136–43.
  • [25] Peng S, Zheng CX, Xu F, Xiao H, Nam H-D, Wu Y. Blood vessels segmentation by using cdnet. 2018 Third IEEE International Conference on Image, Vision and Computing; 2018. pp. 305–10.
  • [26] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer- Assisted Intervention; 2015. pp. 234–41.
  • [27] Yan Z, Yang X, Cheng KTT. Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans Biomed Eng 2018;65(9):1912–23.
  • [28] Paul R, Hawkins SH, Hall LO, Goldgof DB, Gillies RJ. Combining deep neural network and traditional image features to improve survival prediction accuracy for lung cancer patients from diagnostic ct. 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC); 2016. pp. 2570–5.
  • [29] Hofmanninger J, Langs G. Mapping visual features to semantic profiles for retrieval in medical imaging. IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015. pp. 457–65.
  • [30] Li LJ, Chew ZJ. Printed circuit board based memristor in adaptive lowpass filter. Electron Lett 2012;48(25):1610–1.
  • [31] Yu YB, Yang NJ, Yang CY, Nyima T. Memristor bridge-based low pass filter for image processing. J Syst Eng Electron 2019;30(3):448–55.
  • [32] Mapayi T, Tapamo JR, Viriri R. Retinal vessel segmentation: a comparative study of fuzzy C-means and sum entropy information on phase congruency. Int J Adv Robot Syst 2015;12(9):133.
  • [33] Koukounis D, Ttofis C, Papadopoulos A, Theocharides T. A high performance hardware architecture for portable, low-power retinal vessel segmentation. Integration the VLSI Journal 2014;47(3):377–86.
  • [34] Xie S, Tu Z. Holistically-nested edge detection. Proceedings of the IEEE International Conference on Computer Vision 2015;1395–403.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a59ff8b6-2099-4c08-8000-f598bfe4f3ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.