PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prospects of uncooled IR detector technology for military applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Problemy rozwoju, produkcji i eksploatacji techniki uzbrojenia / X Konferencja Naukowo-Techniczna (X ; maj 2001 ; Rynia, Polska)
Języki publikacji
EN
Abstrakty
EN
Over the last several years military applications of infrared photodetectors operating at low temperatures have proliferated. More widespread use of the infrared systems with cooled detectors is limited by a high costs, large size, and inconvenience of operation. At the same time there is no fundamental reason that prevents high performance detection of infrared radiation without cooling. Recently, high performance infrared imagers with uncooled micro-bolometers or other types of thermal detectors have been demonstrated. There are significant efforts on uncooled photon detectors. Sophisticated architecture of the device and high quality materials are necessary to achieve useful performance of uncooled middle MWIR and longwavelength LWIR devices. In this paper we report the use of uncooled infrared photodetectors for military applications such as thermal imagers, smart munitions, laser range finders, threat warning systems, open space communications and others. Various ways to improve performance are described such as optimization of the architecture of the active elements, monolithic integration with immersion microlenses, elimination of traditional processes (radiative and Auger) and others. It is concluded that improved design, materials and processes should reduce or even eliminate the need for cooling of photodetectors in many important military applications of infrared technology.
PL
W publikacji "Perspektywy wojskowych zastosowań urządzeń techniki podczerwieni z niechłodzonymi detektorami" przedstawiono perspektywy rozwoju techniki podczerwieni z niechłodzonymi detektorami dla zastosowań militarnych.
Słowa kluczowe
Rocznik
Strony
53--64
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Military Institute of Armament Technology
  • Military Institute of Armament Technology
Bibliografia
  • 1. R. Hudson and J. Hudson, Infrared Detectors, Hutchinson and Ross, Wiley (1975)
  • 2. G. Gaussorges, La thermographie Infrarouge, Lavoiser, Paris, (1984).
  • 3. J. Piotrowski and A. Rogalski, Detektory promieniowania podczerwonego, WNT, W-wa (1985).
  • 4. The Infrared & Electrooptical Systems Handbook, SPIE, Belingham (1993).
  • 5. J. W. Sherman, “Automatic target recognition systems”, In: The Infrared & Electrooptical Systems Handbook, SPIE, Belingham (1993).
  • 6. T. L. Williams, J. H. Ludlow, Introduction to military thermal imaging, SIRA Technology Center, London (1994).
  • 7. J. Piotrowski, W. Galus and M. Grudzień, „Near room-temperature IR photodetectors, 4, pp. 841-936, Infrared Phys. 31, pp. 1-48, (1990).
  • 8. C. T. Elliot and N. T. Gordon, “Infrared Detectors”, in Handbook on Semiconductors, 4, pp. 841-936, edited by C. Hilsum, North-Holland, Amsterdam,(1993).
  • 9. J. Piotrowski. “Hgz-xCdxTe Infrared Photodetectors”, in Infrared Photodetectors, SPIE, pp. 391-494, Bellingham (1995).
  • 10. J. Piotrowski, “Breakthrough in infrared technology- The micromachined detector arrays”. Opto-Electronics Rev, 3, 3-11 (115).
  • 11. J. Piotrowski and M. Rezeghi, „Improved performance of IR photodetectors with 3D gap engineering”, Proc. SPIE, 2397, PP. 180-192 (1995)
  • 12. C.T. Elliott, N.T. Gordon, T.J. Phillips, H. Steen, A.M. White, D.J. Wilson, C.L. Jones, C.D. Maxey and N. E. Metcalfe, “Minimally cooled heterojuncion laser heterodyne detectors in MOVPE grown Hg1xCdxTe”, J. Electron. Mat. 25(8), pp. 1146-1150 (1996).
  • 13. E.L. Dereniak and G. D. Boreman, Infrared Detectors and Systems, J. Wiley and Sons, N.Y. (1996).
  • 14. J. Piotrowski and W. Gawron. „Ultimate Performance of Infrared Photodetectors and Figure of Merit of Detector Material”, Infrared Physics and Technology, 38, pp. 63-68 (1997).
  • 15. “Uncooled Imaging Arrays and Systems”, in Semiconductor and Semimetals, 47, pp. 1-16, edited by P. Kruse and D. D. Skatrud (1997).
  • 16. B. Musca, J. Antoszewski, J. Dell, L. Faraone J. Piotrowski, Z. Nowak, „Multijunction HgCdTe long wavelength infrared photovoltaic detector for operation at near room temperature”, J. Electronic Mat. 27, pp. 740-746 (1998).
  • 17. J. Piotrowski, Z. Nowak, J. Antoszewski, C. Musca, J. Dell, and L. Faraone, „A novel multi-heterojunction HgCdTe long-wavelength infrared photovoltaic detector for operation under reduced cooling conditions”, Semicons. Sci. Technol. 13, pp. 1209-1214, (1998).
  • 18. P. E. Howard, C. J. Han, J. E. Clarke, J. C. Stevens, P. A. Ely, E. T. Fitzgibons, “Advances in microbolometer focal plane technology at Boeing”, Proc. SPIE, 3379, pp. 47-57 (1998).
  • 19. N. T. Gordon, R. S. Hall, “MCT infrared detectors with close to radiatively limited performance at 240K in the3-5 µm band”, J. Electron Mat., 29, pp. 818-822 (2000).
  • 20. W. A. Radford, D. F. Murphy, J. A. Finch, K. Hay, A. Kennedy, M. Ray. A. A. Sayed, J. Wyles, J. Varesi, E. A. Moody, F. Cheung, “Sesitivity improvements in uncooled microbolometer FPAs”, Proc. SPIE, 3698, pp. 119-130 (1999).
  • 21. M. P. Altman, B. Backer, M. Kohin, R. Blackwell, N. R. Butler, J. H. Cullen, “Lockheed Martin’s 640x480 uncooled microbolometer camera”, Proc. SPIE, 3698, pp. 137-143 (1999).
  • 22. F. Fuchs, L. Buerkle, W. Pletshen, J. Schmitz, M. Walther, H. Gullich, N. Herrer, and S. Mueller, “InAs/Ga1xInxSb infrared superlattice diodes”, Proc. SPIE, 3794, pp. 41-52 (1999).
  • 23. P. E. Howard, J. E. Clarke, W. J. Parrish, J. T. Woolaway, “Advanced high-performance 320x240 Vox microbolometer uncooled IR focal plane”, Proc. SPIE, 3698, pp. 131-136 (1999).
  • 24. C. Vedel, J. L. Martin, J. Ouvrier-Buffet, J. Tissot, M. Vilain, J. Yon, “Amorphous-silicon-based uncooled microbolometer IRFPA”, Proc. SPIE, 3698, pp. 278-283 (1999).
  • 25. D. Prunier, “MATIS and LUTIS handheld thermal imagers” Proc. SPIE, 3698, pp. 291-307 (1999).
  • 26. R. K. McEwen, P.A. Manning, “European uncooled thermal imaging sensors”, Proc. SPIE 3698, pp. 322-337(1999).
  • 27. Ishikawa, M. Ueno, K. Endo, Y. Nakaki, H. Hata, T. Sone, M. Kimata, T. Ozeki, „Low-cost 320x240 uncooled IRFPA using a conventional silicon IC process”, Proc. SPIE 3698, pp. 556-564 (1999).
  • 28. J. Pietrzak, “Urządzenie do ostrzegania przed namierzeniem laserowym”, Thesis, Warsaw, WAT (1999).
  • 29. P.E. Howard, J. E. Clarke, M. G. Bradley, A. C. Ionecu and C. Li, “Progress in Uncooled Focal Plane Technology at Boeing”, Proc. SPIE, 4130, pp. 168-174 (2000).
  • 30. J. Piotrowski and P. Brzozowski “Uncooled IR photodetectors for smart munitions”, Problemy Rozwoju, Produkcji I Eksploatacji Techniki zbrojenia, zeszyt 72, pp. 29-50 (2000).
  • 31. P. G. Datskos, S. Rajic, D. D. Earl B. M. Evams, J. L. Corbeil, and I. Datskou, “Optical readout of uncooled thermal detectors” Proc. SPIE, 4130, pp. 185-197 (2000).
  • 32. J. Piotrowski, M. Grudzień, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanic, W. Gawron, „Uncooled Photovoltaic Hg1xCdxTe LWIR detectors Proc. SPIE, 4130, pp. 175-184 (2000).
  • 33. ViGO Data Sheets, Warsaw, www.vigo.com.pl (2000).
  • 34. Boeing, GEC Marconi, Lokheed-Martin, Sagem, Sofradir, and Raytheon data sheets (2000).
  • 35. Huaping Xu et al, “Development of Si monolithic (Ba,Sr)TiO3 thin film ferroelectric bolometers for uncooled chopperless infrared sensing, Proc. SPIE, 4130, pp. 140-151 (2000).
  • 36. www.sarnoff.com (2000).
  • 37. R. P. Norton, R. Paul, M. Mao, Perazzo, M. Thomas, Y. Zhao, O. Kwon, A. Majumdar; J. Varesi; “Micro-optomechanical infrared receiver with optical readout: MIRROR” Proc. SPIE 4028, pp. 72-78 (2000)
  • 38. F. D. Shepherd, J. E. Murguia, “Comparison of infrared detection mechanisms in thermal-emissive vs. photoemissive silicon Schottky barrier arrays”, Proc. SPI, 4028, pp. 90-101 (2000).
  • 39. R. Murphy, M. Kohin, B. S. Backer, N. R. Butler, R. Blackwell, Tom Allen, “Recently developments in uncooled IR Technology”, Proc. SPIE 4028, pp. 12-16 (2000).
  • 40. J. Maserjian, F.J. Grunthaner and C.T. Elliott, “LWIR detector arrays based on nipi supperlattices”, Infrared Phys., 30, pp. 27-32 (1990).
  • 41. J. Fuchs, L. Buerkle, W. Pletschen, J. Schmitz, M. Walther, H. Gullich, N. Herres, and S. Mueller, “InAs/Ga1xInSb infrared superlattice diodes”, Proc. SPIE, 3794, pp. 41-52 (1999).
  • 42. M. Razeghi, “Type II superlattices (InAs/GaSb/AlAs): alternative to MCT for infrared FPA”, Proc. SPIE, (2001-to be published).
  • 43. Ettenberg, Martin H.; Lange, Michael J.; O'Grady, Mathew T.; Vermaak, Jacobus S.; Cohen, Marshall J.; Olsen, Gregory H., "Room temperature 640x512 pixel near-infrared InGaAs focal plane array", SPIE, 4028, pp. 201-207 (2000)
  • 44. "Infrared Photon Detectors", Ed. by A. Rogalski, SPIE, Bellingham 91995).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a59dec8d-c39d-49c4-85fc-97603aa8285d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.