PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solvent-free synthesis of 1-amidoalkyl-2-naphthol and 3-amino-1-phenyl-1H benzo[f]chromene-2-carbonitrile derivatives by Fe3O4@enamine-B(OSO3H)2 as an efficient and novel heterogeneous magnetic nanostructure catalyst

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A green procedure for the one-pot three-component synthesis of 1-amidoalkyl-2-naphthol and 3-amino-1-phenyl-1H benzo[f]chromene-2-carbonitrile derivatives from the reaction of 2-naphtol, aldehydes, and malononitrile/acetamide in the presence of a catalytic amount of Fe3O4@enamine-B(OSO3H)2 as an efficient and novel heterogeneous magnetic nanostructure catalyst is described. The catalyst was characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). These strategies possess some merits such as simple work-up method, easy preparation of the catalyst, short reaction times, good-to-high yields, and non-use of hazardous solvents during all steps of the reactions. Moreover, due to the magnetic nature of the catalyst, it was readily recovered by magnetic decantation and can be recycled at least six runs with no considerable decrease in catalytic activity.
Rocznik
Strony
9--19
Opis fizyczny
Bibliogr. 73 poz., rys., tab.
Twórcy
autor
  • Guodian Jinshajiang Xulong Hydropower Development Co., Ltd, Chengdu,Sichuan, 610041, China
autor
  • University of Science and Technology, School of Civil Engineering, Anshan, Liaoning 114000, China
  • Dalian University of Technology, State Key Laboratory of Coastal and Offshore Engineering, Dalian, Liaoning,116024, China
autor
  • Zhongyuan University of Technology, Department of Architecture and Engineering, Zhengzhou, Henan, 450007, China
  • University of Al-Qadisiyah, College of Science, Department of Chemistry, Republic of Iraq
Bibliografia
  • 1. Abedinia, O., Zareinejad, M., Doranehgard, M.H., Fathi, G. & Ghadimi, N. (2019). Optimal offering and bidding strategies of renewable energy based large consumer using a novel hybrid robust-stochastic approach. J. Cleaner Prod. 215, 878–889. DOI: 10.1016/j.jclepro.2019.01.085.
  • 2. Bagal, H.A., Soltanabad, Y.N., Dadjuo, M., Wakil, K. & Ghadimi, N. (2018). Risk-assessment of photovoltaic-windbattery-grid based large industrial consumer using information gap decision theory. Solar Energy 169, 343–352. DOI: 10.1016/j.solener.2018.05.003.
  • 3. Shao, M., Ning, F., Zhao, J., Wei, M., Evans, D.G. & Duan, X. (2012). Preparation of Fe3O4@ SiO2@ layered double hydroxide core–shell microspheres for magnetic separation of proteins. J. Amer. Chem. Soc. 134(2), 1071–1077. DOI: 10.1021/ja2086323.
  • 4. Deng, Y., Deng, C., Qi, D., Liu, C., Liu, J., Zhang, X. & Zhao, D. (2009). Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin. Adv. Mater. 21(13), 1377–1382. DOI: 10.1002/adma.200801766.
  • 5. Mobaraki, A., Movassagh, B. & Karimi, B. (2014). Magnetic solid sulfonic acid decorated with hydrophobic regulators: A combinatorial and magnetically separable catalyst for the synthesis of α-aminonitriles. ACS Combin. Sci. 16(7), 352–358. DOI: 10.1021/co500022g.
  • 6. Safaei-Ghomi, J., Javidan, A., Ziarati, A. & Shahbazi-Alavi, H. (2015). Synthesis of new 2-amino-4H-pyran-3, 5-dicarboxylate derivatives using nanocrystalline M II Zr 4 (PO 4) 6 ceramics as reusable and robust catalysts under microwave irradiation. J. Nanopartic. Res. 17(8), 338. DOI: 10.1007/s11051-015-3142-y.
  • 7. Shylesh, S., Schünemann, V. & Thiel, W.R. (2010). Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chemie Internat. Edit. 49(20), 3428–3459. DOI: 10.1002/anie.200905684.
  • 8. Tucker-Schwartz, A.K., Farrell, R.A. & Garrell, R.L. (2011). Thiol–ene click reaction as a general route to functional trialkoxysilanes for surface coating applications. J. Amer. Chem. Soc. 133(29), 11026–11029. DOI: 10.1021/ja202292q.
  • 9. Sadeghzadeh, S.M. & Nasseri, M.A. (2013). Methylene dipyridine nanoparticles stabilized on Fe3O4 as catalysts for efficient, green, and one-pot synthesis of pyrazolophthalazinyl spirooxindoles. Catalysis Today 217, 80–85. DOI: 10.1016/j.cattod.2013.07.018.
  • 10. Vayssieres, L., Chanéac, C., Tronc, E. & Jolivet, J.P. (1998). Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles. J. Colloid Inter. Sci. 205(2), 205–212. DOI: 10.1006/jcis.1998.5614.
  • 11. Hong, R.Y., Feng, B., Liu, G., Wang, S., Li, H.Z., Ding, J.M., ... & Wei, D.G. (2009). Preparation and characterization of Fe3O4/polystyrene composite particles via inverse emulsion polymerization. J. Alloys Comp. 476(1–2), 612–618. DOI: 10.1016/j.jallcom.2008.09.060.
  • 12. Rostamnia, S. & Doustkhah, E. (2015). Synthesis of water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modifi ed Fe3O4 and its catalytic application in Kabachnik–Fields multicomponent reaction. J. Magnet. Magnet. Mater. 386, 111–116. DOI: 10.1016/j.jmmm.2015.03.064.
  • 13. Rostamizadeh, S., Shadjou, N., Azad, M. & Jalali, N. (2012). (α-Fe2O3)-MCM-41 as a magnetically recoverable nanocatalyst for the synthesis of pyrazolo [4, 3-c] pyridines at room temperature. Catal. Commun. 26, 218–224. DOI: 10.1016/j.catcom.2012.05.022.
  • 14. Zhang, F., Jin, J., Zhong, X., Li, S., Niu, J., Li, R. & Ma, J. (2011). Pd immobilized on amine-functionalized magnetite nanoparticles: a novel and highly active catalyst for hydrogenation and Heck reactions. Green Chem. 13(5), 1238–1243. DOI: 10.1039/C0GC00854K.
  • 15. Berry, C.C., & Curtis, A.S. (2003). Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys. 36(13), R198. DOI: 10.1088/0022-3727/36/13/203.
  • 16. Nasongkla, N., Bey, E., Ren, J., Ai, H., Khemtong, C., Guthi, J.S. & Gao, J. (2006). Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Letters 6(11), 2427–2430. DOI: 10.1021/nl061412u.
  • 17. Arruebo, M., Fernández-Pacheco, R., Ibarra, M.R. & Santamaría, J. (2007). Magnetic nanoparticles for drug delivery. Nano Today 2(3), 22–32. DOI: 10.1016/S1748-0132(07)70084-1.
  • 18. Dobson, J. (2006). Magnetic nanoparticles for drug delivery. Drug Development Res. 67(1), 55–60. DOI: 10.1002/ddr.20067.
  • 19. Lewin, M., Carlesso, N., Tung, C.H., Tang, X.W., Cory, D., Scadden, D.T. & Weissleder, R. (2000). Tat peptidederivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnol. 18(4), 410. DOI: 10.1038/74464.
  • 20. Govan, J. & Gun’ko, Y.K. (2014). Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. Nanomaterials, 4(2), 222–241. DOI: 10.3390/nano4020222.
  • 21. Shen, A.Y., Tsai, C.T. & Chen, C.L. (1999). Synthesis and cardiovascular evaluation of N-substituted 1-aminomethyl2-naphthols. Europ. J. Med. Chem. 34(10), 877–882. DOI: 10.1016/S0223-5234(99)00204-4.
  • 22. Szatmari, I. & Fulop, F. (2004). Syntheses and transformations of 1-(α-aminobenzyl)-2-naphthol derivatives. Current Org. Synthesis 1(2), 155–165. DOI: 10.2174/1570179043485402.
  • 23. Ansari, S.A.M.K., Sangshetti, J.N., Kokare, N.D., Wakte, P.S. & Shinde, D.B. (2010). Oxalic acid catalyzed solvent-free synthesis of α-amidoalkyl-β-naphthols. Ind. J. Chem. Technol. 17(1), 71–73.
  • 24. Das, B., Laxminarayana, K., Ravikanth, B. & Rao, B.R. (2007). Iodine catalyzed preparation of amidoalkyl naphthols in solution and under solvent-free conditions. J. Molec. Catal. A: Chem. 261(2), 180–183. DOI: 10.1016/j.molcata.2006.07.077.
  • 25. Patil, S.B., Singh, P.R., Surpur, M.P., & Samant, S.D. (2007). Cation-Exchanged Resins: Efficient Heterogeneous Catalysts for Facile Synthesis of 1-Amidoalkyl-2-naphthols from One-Pot, Three-Component Condensations of Amides/Ureas, Aldehydes, and 2-Naphthol. Synt. Commun. 37(10), 1659–1664.
  • 26. Chavan, N.L., Naik, P.N., Nayak, S.K. & Kusurkar, R.S. (2010). Indium (III) chloride: an efficient catalyst for the synthesis of amidoalkyl naphthols. Synt. Commun. 40(19), 2941–2947. DOI: 10.1080/00397910903340702.
  • 27. Patil, S.B., Singh, P.R., Surpur, M.P. & Samant, S.D. (2007). Ultrasound-promoted synthesis of 1-amidoalkyl2-naphthols via a three-component condensation of 2-naphthol, ureas/amides, and aldehydes, catalyzed by sulfamic acid under ambient conditions. Ultrasonics Sonochem. 14(5), 515–518. DOI: 10.1016/j.ultsonch.2006.09.006.
  • 28. Nagarapu, L., Baseeruddin, M., Apuri, S. & Kantevari, S. (2007). Potassium dodecatungstocobaltate trihydrate (K5CoW12O40· 3H2O): A mild and efficient reusable catalyst for the synthesis of amidoalkyl naphthols in solution and under solvent-free conditions. Catal. Commun. 8(11), 1729–1734. DOI: 10.1016/j.catcom.2007.02.008.
  • 29. Arundhathi, K., Sudhakar, K., Sastry, B.S. & Yadav, J.S. (2010). A novel three-component one-pot reaction involving β-naphthol, aldehydes, and urea promoted by TMSCl/NaI. DOI: 10.1002/jhet.328.
  • 30. Shaterian, H.R., Yarahmadi, H. & Ghashang, M. (2008). An efficent, simple and expedition synthesis of 1-amidoalkyl2-naphthols as ‘drug like’molecules for biological screening. Bioorg. & Med. Chem. Letters 18(2), 788–792. DOI: 10.1016/j.bmcl.2007.11.035.
  • 31. Kumar, A., Rao, M.S., Ahmad, I. & Khungar, B. (2009). A simple and facile synthesis of amidoalkyl naphthols catalyzed by Yb (OTf) 3 in ionic liquids. Canad. J. Chem. 87(6), 714–719. DOI: 10.1139/V09-049.
  • 32. Khodaei, M.M., Khosropour, A.R. & Moghanian, H. Synlett., 2006, 132, 916.
  • 33. Zhang, P. & Zhang, Z.H. (2009). Preparation of amidoalkyl naphthols by a three-component reaction catalyzed by 2, 4, 6-trichloro-1, 3, 5-triazine under solvent-free conditions. Monatshefte für Chem.- Chem. Monthly 140(2), 199. DOI: 10.1007/s00706-008-0059-5.
  • 34. Jiang, W.Q., An, L.T., & Zou, J.P. (2008). Molybdophosphoric Acid: An Efficient Keggin-type Heteropoloacid Catalyst for the One-pot Three-Component Synthesis of 1-Amidoalkyl2-naphthols. Chin. J. Chem. 26(9), 1697–1701. DOI: 10.1002/cjoc.200890307.
  • 35. Su, W.K., Tang, W.Y. & Li, J.J. (2008). Strontium(II) triflate catalysed condensation of β-naphthol, aldehyde and urea or amides: a facile synthesis of amidoalkyl naphthols. Chem. Res. 123–128. DOI: 10.3184/030823408X298508.
  • 36. Kantevari, S., Vuppalapati, S.V. & Nagarapu, L. (2007). Montmorillonite K10 catalyzed efficient synthesis of amidoalkyl naphthols under solvent free conditions. Catalysis Communications 8(11), 1857–1862. DOI: 10.1016/j.catcom.2007.02.022.
  • 37. Khafagy, M.M., El-Wahab, A.H.A., Eid, F.A. & El-Agrody, A.M. (2002). Synthesis of halogen derivatives of benzo [h] chromene and benzo [a] anthracene with promising antimicrobial activities. Il Farmaco 57(9), 715–722. DOI: 10.1016/S0014-827X(02)01263-6.
  • 38. Jeso, V. & Nicolaou, K.C. (2009). Total synthesis of tovophyllin B. Tetrahedron letters 50(11), 1161–1163. DOI: 10.1016/j.tetlet.2008.12.096.
  • 39. Skommer, J., Wlodkowic, D., Mättö, M., Eray, M. & Pelkonen, J. (2006). HA14-1, a small molecule Bcl-2 antagonist, induces apoptosis and modulates action of selected anticancer drugs in follicular lymphoma B cells. Leukemia Res. 30(3), 322–331. DOI: 10.1016/j.leukres.2005.08.022.
  • 40. Mohr, S.J. (1975). Chirigos. MA, Fuhrman, FS, and Pryor, JW Pyran Copolymer as an Effective Adjuvant to Chemotherapy against a Murine Leukemia and Solid Tumor. Cancer Res. 35, 3750–3754.
  • 41. Wang, J.L., Liu, D., Zhang, Z.J., Shan, S., Han, X., Srinivasula, S.M., ... & Huang, Z. (2000). Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proceed. Nat. Acad. Sci. 97(13), 7124–7129. DOI: 10.1073/pnas.97.13.7124.
  • 42. Martínez-Grau, A., & Marco, J. (1997). Friedländer reaction on 2-amino-3-cyano-4H-pyrans: Synthesis of derivatives of 4H-pyran [2, 3-b] quinoline, new tacrine analogues. Bioorg. & Medic. Chem. Letters 7(24), 3165–3170. DOI: 10.1016/S0960-894X(97)10165-2.
  • 43. Smith, P.W., Sollis, S.L., Howes, P.D., Cherry, P.C., Starkey, I.D., Cobley, K.N., ... & Wyatt, P. (1998). Dihydropyrancarboxamides related to zanamivir: A new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure− activity relationships of 4-guanidinoand 4-amino-4 H-pyran-6-carboxamides. J. Med. Chem. 41(6), 787–797. DOI: 10.1021/jm970374b.
  • 44. Kidwai, M., Saxena, S., Khan, M.K.R. & Thukral, S.S. (2005). Aqua mediated synthesis of substituted 2-amino-4Hchromenes and in vitro study as antibacterial agents. Bioorg. & Med. Chem. Letters 15(19), 4295–4298. DOI:10.1016/j.bmcl.2005.06.041.
  • 45. Eiden, F. & Denk, F. (1991). Synthesis of CNS-activity of pyran derivatives: 6, 8-dioxabicyclo (3, 2, 1) octane. Arch. Pharm. 324(6), 353–354. DOI: 10.1002/ardp.19913240606.
  • 46. Albadi, J., Razeghi, A., Mansournezhad, A. & Azarian, Z. (2013). CuO-CeO 2 nanocomposite catalyzed efficient synthesis of aminochromenes. J. Nanostr. Chem. 3(1), 85.
  • 47. Rao, M.S., Chhikara, B.S., Tiwari, R., Shirazi, A.N., Parang, K. & Kumar, A. (2012). A greener synthesis of 2-aminochromenes in ionic liquid and evaluation of their antiproliferative activities.
  • 48. Gong, K., Wang, H.L., Fang, D. & Liu, Z.L. (2008). Basic ionic liquid as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes in aqueous media. Catal. Commun. 9(5), 650–653. DOI: 10.1016/j.catcom.2007.07.010.
  • 49. Abdolmohammadi, S., Afsharpour, M. & KeshavarzFatideh, S. (2014). An Efficient Green Synthesis of 3-Amino-1 H-chromenes Catalyzed by ZnO Nanoparticles Thin-film. South Afric. J. Chem. 67(1), 203–210.
  • 50. El-Maghraby, A.M. (2014). Green chemistry: new synthesis of substituted chromenes and benzochromenes via three-component reaction utilizing Rochelle salt as novel green catalyst. Org. Chem. Internat. DOI: 10.1155/2014/715091.
  • 51. Balalaie, S., Ramezanpour, S., Bararjanian, M. & Gross, J.H. (2008). DABCO-catalyzed effcient synthesis of naphthopyran derivatives via One-Pot three-component condensation reaction at room temperature. Synt. Commun. 38(7), 1078–1089. DOI: 10.1080/00397910701862865.
  • 52. Wang, M., Zhang, T.T., Liang, Y. & Gao, J.J. (2012). Efficient synthesis of mono-and disubstituted 2, 3-dihydroquinazolin-4 (1H)-ones using copper benzenesulfonate as a reusable catalyst in aqueous solution. Monatshefte für Chem.-Chem. Monthly 143(5), 835–839. DOI: 10.1007/s00706-011-0648-6.
  • 53. Hajipour, A.R., Ghayeb, Y., Sheikhan, N. & Ruoho, A.E. (2009). Brønsted acidic ionic liquid as an efficient and reusable catalyst for one-pot synthesis of 1-amidoalkyl 2-naphthols under solvent-free conditions. Tetrahedron Letters 50(40), 5649–5651. DOI: 10.1016/j.tetlet.2009.07.116.
  • 54. Selvam, N.P. & Perumal, P.T. (2006). A new synthesis of acetamido phenols promoted by Ce (SO4) 2. Tetrahedron Letters 47(42), 7481–7483. DOI: 10.1016/j.tetlet.2006.08.038.
  • 55. Nandi, G.C., Samai, S., Kumar, R. & Singh, M.S. (2009). Atom-efficient and environment-friendly multicomponent synthesis of amidoalkyl naphthols catalyzed by P2O5. Tetrahedron Letters 50(51), 7220–7222. DOI: 10.1016/j.tetlet.2009.10.055.
  • 56. Shaterian, H.R., Yarahmadi, H. & Ghashang, M. (2008). Silica supported perchloric acid (HClO4–SiO2): an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols. Tetrahedron 64(7), 1263–1269. DOI: 10.1016/j.tet.2007.11.070.
  • 57. Luo, J. & Zhang, Q. (2011). A one-pot multicomponent reaction for synthesis of 1-amidoalkyl-2-naphthols catalyzed by PEG-based dicationic acidic ionic liquids under solvent-free conditions. Monatshefte für Chem.-Chem. Monthly 142(9), 923. DOI: 10.1007/s00706-011-0522-6.
  • 58. Ghorbani-Vaghei, R. & Malaekehpour, S.M. (2010). Efficient and solvent-free synthesis of 1-amidoalkyl-2-naphthols using N, N, N’, N’-tetrabromobenzene-1, 3-disulfonamide. Central Europ. J. Chem. 8(5), 1086–1089. DOI: 10.2478/s11532-010-0077-0.
  • 59. Moosavi-Zare, A.R., Zolfigol, M.A., Khaledian, O., Khakyzadeh, V., Beyzavi, M.H. & Kruger, H.G. (2014). Tandem Knoevenagel–Michael–cyclocondensation reaction of malononitrile, various aldehydes and 2-naphthol over acetic acid functionalized ionic liquid. Chem. Engin. J. 248, 122–127. DOI: 10.1016/j.cej.2014.03.035.
  • 60. Dekamin, M.G., Eslami, M. & Maleki, A. (2013). Potassium phthalimide-N-oxyl: a novel, efficient, and simple organocatalyst for the one-pot three-component synthesis of various 2-amino-4H-chromene derivatives in water. Tetrahedron 69(3), 1074–1085. DOI: 10.1016/j.tet.2012.11.068.
  • 61. Nabinia, N., Shirini, F., Tajik, H., Mashhadinezhad, M. & Langarudi, M.S.N. (2018). An affordable DABCO-based ionic liquid efficiency in the synthesis of 3-amino-1-aryl-1Hbenzo [f] chromene-2-carbonitrile, 1-(benzothiazolylamino) phenylmethyl-2-naphthol, and 1-(benzoimidazolylamino) phenylmethyl-2-naphthol derivatives. J. Iranian Chem. Soc. 15(9), 2147–2157. DOI: 10.1007/s13738-018-1408-x.
  • 62. Behbahani, F.K. & Maryam, S. (2013). On Water CuSO 4. 5H 2 O-catalyzed Synthesis of 2-amino-4H-chromenes. J. Korean Chem. Soc. 57(3), 357–360. Chem. Soc. 57(3), 357–360.
  • 63. Sadeghi, B. & Zarepour, I. (2015). Nano-sawdust–BF 3 asa new, cheap, and effective nano catalyst for one-pot synthesis of 2-amino benzo [h] chromene derivatives. J. Nanostruc. Chem. 5(3), 305–311. DOI: 10.1007/s40097-015-0162-1.
  • 64. Akandi, A.S., Balali, E., Mosavat, T., Ghanbari, M.M. & Eazabadi, A. (2014). The One-Step Synthesis of 3, 4-Dihydropyrano [F] Chromene Derivatives in Under Grinding as an Environmentally Friendly Alternative. Oriental J. Chem. 30(2). DOI: 10.13005/ojc/300225.
  • 65. Cai, X.H., Guo, H. & Xie, B. (2011). One-pot multicomponent synthesis of amidoalkyl naphthols with potassium hydrogen sulfate as catalyst under solvent-free condition. Jordan J. Chem. 146(602), 1–4.
  • 66. Hazeri, N., Maghsoodlou, M.T., Habii-Khorassani, S.M., Aboonajmi, J. & Safarzei, M. (2013). A green protocol for one-pot three-component synthesis of amidoalkyl naphthols catalyzed by succinic acid. Chem. Sci. Transac. 2(S1), S330–S336. DOI: 10.7598/cst2013.426.
  • 67. Chinna Ashalua, K. & Nageshwar Rao, J. (2013). MgSO4 catalyzed one-pot multi-component reaction: Synthesis of amidoalkyl naphthols. J. Chem. Pharm. Res. 5, 44.
  • 68. Taghrir, H., Ghashang, M. & Biregan, M.N. (2016). Preparation of 1-amidoalkyl-2-naphthol derivatives using barium phosphate nano-powders. Chin. Chem. Letters 27(1), 119–126. DOI: 10.1016/j.cclet.2015.08.011.
  • 69. Zolfigol, M.A., Baghery, S., Moosavi-Zare, A.R., Vahdat, S.M., Alinezhad, H. & Norouzi, M. (2015). Design of 1-methylimidazolium tricyanomethanide as the first nanostructured molten salt and its catalytic application in the condensation reaction of various aromatic aldehydes, amides and β-naphthol compared with tin dioxide nanoparticles. RSC Adv. 5(56), 45027–45037. DOI: 10.1039/C5RA02718G.
  • 70. Heravi, M.M., Hosseinnejad, T., Faghihi, Z., Shiri, M., & Vazinfard, M. (2017). Synthesis of 2-amino-3-cyano 4-Hchromenes containing quinoline in water: computational study on substituent effects. J. Iranian Chem. Soc. 14(4), 823–832. DOI: 10.1007/s13738-016-1032-6.
  • 71. Eshghi, H., Damavandi, S. & Zohuri, G.H. (2011).One pot synthesis of pyran-based heterocycles from benzyl halides as key reagents. Inorg. Met. Org. NanoMet. Chem. 41, 1067.
  • 72. Baghbanian, S.M., Rezaei, N., & Tashakkorian, H. (2013). Nanozeolite clinoptilolite as a highly efficient heterogeneous catalyst for the synthesis of various 2-amino-4 H-chromene derivatives in aqueous media. Green Chem. 15(12), 3446–3458. DOI: 10.1039/C3GC41302K.
  • 73. Heravi, M.M., Baghernejad, B. & Oskooie, H.A. (2008). A Novel and Efficient Catalyst to One-Pot Synthesis of 2-Amino-4H-Chromenes by Methanesulfonic. Acid. J. Chin. Chem. Soc. 55(3), 659–662. DOI: 10.1002/jccs.200800098.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a59d546a-2315-4322-9e73-705eb1a8ef4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.