Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Polyphenylsulfone (PPSU) membranes are critical for numerous applications, including water treatment, oil separation, energy production, electronic manufacturing, and biomedicine because of their low cost; regulated crystallinity; and chemical, thermal, and mechanical stability. Numerous studies have shown that altering the surface characteristics of PPSU membranes affects their stability and functionality. Nanocomposite membranes of PPSU (P0), PPSU-1%TiO2 (P1), and PPSU-2% TiO2 (P2) were prepared using the phase inversion method. Scanning electron microscopy and thermal analysis were performed to determine the contact angle and mechanical integrity of the proposed membranes. The results showed that the membranes contained channels of different diameters extending between 1.8 μm and 10.3 μm, which made them useful in removing oil. Thermal measurements showed that all of the PPSU membranes were stable at a temperature of not less than 240 °C, and had good mechanical properties, including tensile strength of 7.92 MPa and elongation of 0.217%. These properties enabled them to function in a harsh thermal environment. The experimental results of oil and water separation and BSA solution fouling on membrane P2 showed a 92.95% rejection rate and a flux recovery ratio of 82.56%, respectively, compared to P0 and P1.
Czasopismo
Rocznik
Tom
Strony
1--13
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
autor
- Environment Research Center, University of Technology-Iraq, Baghdad, Iraq
autor
- Nanotechnology and Advanced Materials Research Center, University of Technology-Iraq, Baghdad, Iraq
autor
- Department of Nursing, Al-Hadi University College, Baghdad, Iraq
autor
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
autor
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, Iraq
autor
- Environment and Water Directorate, Ministry of Science and Technology, Baghdad, Iraq
autor
- Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Baghdad, Iraq
Bibliografia
- 1. Abdullah R.R., Shabeed, K.M., Alzubaydi A.B., Alsalhy, Q.F. 2022. Novel photocatalytic polyether sulphone ultrafiltration (UF) membrane reinforced with oxygen-deficient Tungsten Oxide (WO2. 89) for Congo red dye removal. Chemical engineering research and design, 177, 526–540.
- 2. Ahmad A.L., Abdulkarim A.A., Ooi B.S., Ismail S. 2013. Recent development in additives modifications of polyethersulfone membrane for flux enhancement, Chem. Eng. J., 223, 246–267.
- 3. Al-Ani F.H., Alsalhy Q.F., Raheem R.S., Rashid K.T., Alberto F.I. 2020. Experimental investigation of the effect of implanting tio2-nps on pvc for longterm uf membrane performance to treat refinery wastewater. Membranes (Basel), 10(4), 77.
- 4. Aljumaily M., Alsaadi Hashim N.A., Alsalhy Q.F., Das R., Mjalli F.S. 2019. Embedded high-hydrophobic CNMs prepared by CVD technique with PVDF-co-HFP membrane for application in water desalination by DCMD, Desalination and Water Treatment, 142, 37–48.
- 5. Aljumaily M., Alsaadi N.A., Alsalhy Q.F., Mjalli F.S., Atieh M.A. 2018. PVDF-co-HFP/superhydrophobic acetylene-based nanocarbon hybrid membrane for seawater desalination via DCMD. Chemical Engineering Research and Design, 138, 248–259.
- 6. Alsalhy Q.F., Ali J.M., Abbas A.A., Rashed A., Bruggen B.V., Balta S. 2013. Enhancement of poly (phenyl sulfone) membranes with ZnO nanoparticles,” Desalin. Water Treat., 51(31–33), 6070–6081. DOI: 10.1080/19443994.2013.764487
- 7. Alsalhy Q.F., Al-Ani F.H., Al-Najar A.E. 2018. A new Sponge-GAC-Sponge membrane module for submerged membrane bioreactor use in hospital wastewater treatment. Biochemical Engineering Journal, 133, 130–139.
- 8. Alsalhy Q.F., Riyadh S., Almukhtar, Harith A., Alani. 2016. Treatment of oil refinery wastewater by membrane bioreactor (MBR), Arabian J. of Sci. and Eng., 41, 2439–2452.
- 9. Amna J.S., Eman S.A., Kadhum M.Sh., Bassam I.Kh., Sama M., Sabirova T.M., Tretyakova N. A., Hasan S.M., Alsalhy Q.F., Auda J.B. 2020. Comparative study of embedded functionalised MWCNTs and GO in Ultrafiltration (UF) PVC membrane: interaction mechanisms and performance, International Journal of Environmental Analytical Chemistry.
- 10. Amna J.S., Kadhum M.S., Bassam I.K., Alsalhy Q.F. 2020. Effect of embedding MWCNT-g-GO with PVC on the performance of PVC membranes for oily wastewater treatment. Chemical Engineering Comunications, 207(6), 733–750.
- 11. Bahmani M., Zarghami S., Mohammadi T., Asadi A.A., Khanlari, S. 2021. PES electrospun fibrous membrane for oily wastewater treatment: Fabrication condition optimization using response surface methodology. Polym. Adv. Technol., 32(2), 886–899. DOI: 10.1002/pat.5140
- 12. Bhattacharya P., Mukherjee D., Dey S., Ghosh S., Banerjee S. 2019. Development and performance evaluation of a novel CuO/TiO2 ceramic ultrafiltration membrane for ciprofloxacin removal. Materials Chemistry and Physics, 229, 106–116.
- 13. Canizares P., Martínez F., Jiménez C., Sáez C., Rodrigo M. A.2008. Coagulation and electrocoagulation of oil-in-water emulsions. J. Hazard. Mater., 151(1), 44–51.
- 14. Cheshomi N., Pakizeh M., Namvar‐Mahboub M. 2018. Preparation and characterization of TiO2/Pebax/(PSf‐PES) thin film nanocomposite membrane for humic acid removal from water. Polym. Adv. Technol., 29(4), 1303–1312.
- 15. Feng Y. 2016. Rheology and phase inversion behavior of polyphenylenesulfone (PPSU) and sulfonated PPSU for membrane formation. Polymer (Guildf)., 99, 72–82.
- 16. Haider A.J., Al-Anbari R., Sami H.M., Haider M.J. 2019. Photocatalytic Activity of Nickel Oxide. J. Mater. Res. Technol., 8(3), 2802–2808. DOI: 10.1016/j.jmrt.2019.02.018
- 17. Haider A., Al-Anbari R., Kadhim G., Jameel Z. 2018. Synthesis and photocatalytic activity for TiO2 nanoparticles as air purification. 2018 MATEC Web Conf., 162, 1–6. DOI: 10.1051/matecconf/201816205006
- 18. Hatakeyama T., Quinn F.X. 1999. Thermal analysis: fundamentals and applications to polymer science.
- 19. Hosseini S.S., Fakharian T.S., Alaei S.M.A., Tavangar T. 2018. Fabrication, characterization, and performance evaluation of polyethersulfone/TiO2 nanocomposite ultrafiltration membranes for produced water treatment. Polymers for Advanced Technologies, 29(10), 2619–2631.
- 20. Ismail N. H.2020. Hydrophilic polymer-based membrane for oily wastewater treatment: A review. Sep. Purif. Technol., 233, 116007. DOI: 10.1016/j.seppur.2019.116007
- 21. Johari N.A., Yusof N., Lau W.J., Abdullah N., Salleh W.N.W., Jaafar J., Ismail A.F. 2021. Polyethersulfone ultrafiltration membrane incorporated with ferric-based metal-organic framework for textile wastewater treatment. Separation and Purification Technology, 270, 118819.
- 22. Kaleekkal N.J., Thanigaivelan A., Rana D., Mohan D. 2017. Studies on carboxylated graphene oxide incorporated polyetherimide mixed matrix ultrafiltration membranes. Materials Chemistry and Physics, 186, 146–158.
- 23. Kallem P., Othman I., Ouda M., Hasan S. W., Al-Nashef I., Banat F. 2021. Polyethersulfone hybrid ultrafiltration membranes fabricated with polydopamine modified ZnFe2O4 nanocomposites: Applications in humic acid removal and oil/water emulsion separation. Process Safety and Environmental Protection, 148, 813–824.
- 24. Kong J., Li K. 1999. Oil removal from oil-in-water emulsions using PVDF membranes. Sep. Purif. Technol., 16(1), 83–93.
- 25. Lu D. 2016. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion. Sep. Purif. Technol., 165, 1–9.
- 26. Lu H., Wang J., Stoller M., Wang T., Bao Y., Hao H. 2016. An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng.
- 27. Maphutha S., Moothi K., Meyyappan M., Iyuke S.E. 2013. A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water. Scientific reports, 3(1), 1–6.
- 28. Nasrollahi N., Aber S., Vatanpour V., Mahmoodi N.M. 2018. The effect of amine functionalization of CuO and ZnO nanoparticles used as additives on the morphology and the permeation properties of polyethersulfone ultrafiltration nanocomposite membranes. Composites Part B: Engineering, 154, 388–409.
- 29. Nayak M.C., Isloor A.M., Moslehyani A., Ismail A.F. 2017.Preparation and characterization of PPSU membranes with BiOCl nanowafers loaded on activated charcoal for oil in water separation. J. Taiwan Inst. Chem. Eng., 77, 293–301.
- 30. Ong C.S., Lau W.J., Goh P.S., Ng B.C., Ismail A.F. 2014.Investigation of submerged membrane photocatalytic reactor (sMPR) operating parameters during oily wastewater treatment process, Desalination, 353, 48–56.
- 31. Pendergast M.M., Hoek E.M.V. 2011. A review of water treatment membrane nanotechnologies. Energy Environ. Sci., 4(6), 1946–1971. DOI: 10.1039/c0ee00541j
- 32. Rabiee H., Farahani M.H.D.A., Vatanpour V. 2014. Preparation and characterization of emulsion poly(vinyl chloride) (EPVC)/TiO2 nanocomposite ultrafiltration membrane. J. Memb. Sci., 472, 185–193.
- 33. Rahimpour A., Madaeni S.S., Taheri A.H., Mansourpanah Y. 2008.Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J. Memb. Sci., 313(1–2), 158–169.
- 34. Rameetse M.S., Aberefa O., Daramola M.O. 2020. Effect of loading and functionalization of carbon nanotube on the performance of blended polysulfone/polyethersulfone membrane during treatment of wastewater containing phenol and benzene. Membranes, 10(3), 54.
- 35. Rana J.K., Al-Ani Faris H., Alsalhy Q.F. 2021. MCM-41 mesoporous modified polyethersulfone nanofiltration membranes and their prospects for dyes removal, International Journal of Environmental Analytical Chemistry, 1–21.
- 36. Reham R.A., Kadium M.S., Aseel B., Alsalhy Q.F. 2022. Novel photocatalytic polyether sulphone ultrafiltration (UF) membrane reinforced with oxygen-deficient Tungsten Oxide (WO2.89) for Congo red dye removal, Chemical Engineering Research and Design, 177, 526–540.
- 37. Salim S.H., Al-Anbari R.H., Haider A. 2022. Polysulfone/TiO2 Thin Film Nanocomposite for Commercial Ultrafiltration Membranes,” J. Appl. Sci. Nanotechnol., 2(1), 80–89. DOI: 10.53293/jasn.2022.4528.1121
- 38. Salim S.H., Al-Anbari R.H., Haider A. 2021. Polymeric Membrane with Nanomaterial’s for Water Purification: A Review,” in IOP Conference Series: Earth and Environmental Science, 779(1), 12103.
- 39. Salim N.E., Nor N.A.M., Jaafar J., Ismail A.F., Qtaishat M.R., Matsuura T., Yusof N. 2019. Effects of hydrophilic surface macromolecule modifier loading on PES/Og-C3N4 hybrid photocatalytic membrane for phenol removal. Applied Surface Science, 465, 180–191.
- 40. Shakak M., Rezaee R., Maleki A., Jafari A., Safari M., Shahmoradi B., Lee, S.M. 2020. Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of amoxicillin from aqueous solutions. Environmental Technology & Innovation, 17, 100529.
- 41. Shi H. 2016.A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. J. Memb. Sci., 506, 60–70.
- 42. Shukla A.K., Alam J., Alhoshan M., Dass L.A., Muthumareeswaran M.R. 2017.Development of a nanocomposite ultrafiltration membrane based on polyphenylsulfone blended with graphene oxide. Sci. Rep., 7(1), 1–12.
- 43. Shukla A.K., Alam J., Alhoshan M., Aldalbahi A. 2020. A facile approach for elimination of electroneutral/anionic organic dyes from water using a developed carbon-based polymer nanocomposite membrane. Water, Air, Soil Pollut., 231(3), 1–16.
- 44. Soares S.F., Rodrigues M.I., Trindade T., Daniel-da-Silva A.L. 2017.Chitosan-silica hybrid nanosorbents for oil removal from water. Colloids Surfaces a Physicochem. Eng. Asp., 532, 305–313.
- 45. Stack L.J., Carney P.A., Malone H.B., Wessels T.K. 2005.Factors influencing the ultrasonic separation of oil-in-water emulsions. Ultrason. Sonochem., 12(3), 153–160.
- 46. Sun S., Xiao Q.-R., Zhou X., Wei Y.-Y., Shi L., Jiang Y. 2018. A bio-based environment-friendly membrane with facile preparation process for oil-water separation. Colloids Surfaces A Physicochem. Eng. Asp., 559, 18–22.
- 47. Taylor M., Urquhart A.J., Zelzer M., Davies M.C., Alexander M.R. 2007. Picoliter water contact angle measurement on polymers. Langmuir, 23(13), 6875–6878.
- 48. Tiron L.G., Pintilie C., Vlad M., Birsan I.G., Baltǎ. 2017. Characterization of Polysulfone Membranes Prepared with Thermally Induced Phase Separation Technique. IOP Conf. Ser. Mater. Sci. Eng., 209(1). DOI: 10.1088/1757-899X/209/1/012013
- 49. Waghmode M.S., Gunjal A.B., Mulla J.A., Patil N.N., Nawani N.N. 2019. Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation. SN Appl. Sci., 1(4), 1–9.
- 50. Xu X. 2019.Nanofiltration membrane constructed by tuning the chain interactions of polymer complexation. J. Memb. Sci., 580, 289–295.
- 51. Zahed S.S.H., Khanlari S., Mohammadi T. 2019. Hydrous metal oxide incorporated polyacrylonitrile-based nanocomposite membranes for Cu (II) ions removal. Separation and Purification Technology, 213, 151–161.
- 52. Zhang Y., Xu X., Yue C., Song L., Lv Y., Liu F., Li A. 2021. Insight into the efficient co-removal of Cr (VI) and Cr (III) by positively charged UiO-66-NH2 decorated ultrafiltration membrane. Chemical Engineering Journal, 404, 126546.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5982227-3d75-4e1e-9581-e156106cf10c