PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of chromium and strontium from aqueous solutions by adsorption on laterite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To investigate the adsorptive properties of a local laterite deposited in Chenzhou, Hunan province, China, the adsorptive properties of the natural laterite were investigated by batch technique in this study. The effects of contact time, pH, ionic strength, temperature, and the concentration on adsorption properties were also analyzed. The obtained experimental results show that the main mineral composition of laterite is kaolinite and montmorillonite. The adsorption process achieved equilibrium within 60 minutes and 90 minutes for Sr(II) and Cr(VI), respectively. The adsorption capacities for Cr(VI) and Sr(II) by the laterite were about 7.25 mg·g-1 and 8.35 mg·g-1 under the given experimental conditions, respectively. The equilibrium adsorption data were fitted to the second-order kinetic equation. The adsorption capacity for Sr(II) onto the laterite increased with increasing pH from 3–11 but decreased with increasing ionic strength from 0.001 to 1.0 M NaCl. The Sr(II) adsorption reaction on laterite was endothermic and the process of adsorption was favored at high temperature. Similarly, the adsorption capacity for Cr(VI) onto the laterite increased with increasing pH from 3–11, however, the ionic strength and temperature had an insignificant effect on Cr(VI) adsorption. The adsorption of Cr(VI) and Sr(II) was dominated by ion exchange and surface complexation in this work. Furthermore, the Langmuir and Freundlich adsorption isotherm model was used for the description of the adsorption process. The results suggest that the studied laterite samples can be effectively used for the treatment of contaminated wastewaters.
Słowa kluczowe
Rocznik
Strony
11--20
Opis fizyczny
Bibliogr. 66 poz., rys., tab., wykr.
Twórcy
autor
  • Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological, Environment Monitoring (Central South University), Ministry of Education, P.R. China
  • School of Geosciences and Info-Physics, Central South University, Changsha 410083, P.R. China
  • Tongji University, Shanghai, China
  • Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological, Environment Monitoring (Central South University), Ministry of Education, P.R. China
  • School of Geosciences and Info-Physics, Central South University, Changsha 410083, P.R. China
autor
  • Tongji University, Shanghai, China
autor
  • Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological, Environment Monitoring (Central South University), Ministry of Education, P.R. China
  • School of Geosciences and Info-Physics, Central South University, Changsha 410083, P.R. China
Bibliografia
  • 1. Adebowale, K.O., Unuabonah, I.E. & Olu-Owolabi, B.I. (2006). The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay, Journal of Hazardous Materials, 134, 1-3, pp. 130-139, DOI: 10.1016/j.jhazmat.2005.10.056.
  • 2. Ahmadpour, A., Zabihi, M., Tahmasbi, M. & Bastami, T.R. (2010). Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions, Journal of Hazardous Materials, 182, 1-3, pp. 552-556, DOI: 10.1016/j.jhazmat.2010.06.067.
  • 3. Akar, S.T., Yetimoglu, Y. & Gedikbey, T. (2009). Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification, Desalination, 244, pp. 97-108, DOI: 10.1016/j.desal.2008.04.040.
  • 4. Anjos, V.E.D., Rohwedder, J.R., Cadore, S., Abate, G. & Grassi, M.T. (2014). Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: adsorption and desorption studies of As, Ba, Cu, Cd, Co, Cr, Mn, Ni, Pb, Sr, V, and Zn, Applied Clay Science, 99, pp. 289-296, DOI: 10.1016/j.clay.2014.07.013.
  • 5. Atalay, E., Gode, F. & Sharma, Y.C. (2010). Removal of selected toxic metals by a modified adsorbent, Practice Periodical of Hazardous Toxic & Radioactive Waste Management, 14, 2, pp. 132-138, DOI: 10.1061/(ASCE)HZ.1944-8376.0000023.
  • 6. Balkaya, N. & Cesur, H. (2008). Adsorption of cadmium from aqueous solution by phosphogypsum, Chemical Engineering Journal, 140, 1-3, pp. 247-254, DOI: 10.1016/j.cej.2007.10.002.
  • 7. Bayrak, Y., Yesiloglu, Y. & Gecgel, U. (2006). Adsorption behavior of Cr(VI) on activated hazelnut shell ash and activated bentonite, Microporous and Mesoporous Materials, 91, 1-3, pp. 107-110, DOI: 10.1016/j.micromeso.2005.11.010.
  • 8. Bhattacharyya, K.G. & Gupta, S.S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review, Advances in Colloid and Interface Science, 140, 2, pp. 114-131, DOI: 10.1016/j.cis.2007.12.008.
  • 9. Boddu, V.M., Abburi, K., Talbott, J.L. & Smith, E.D. (2003). Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent, Environmental Science & Technology, 37, 19, pp. 4449-4456, DOI: 10.1021/es021013a.
  • 10. Chairidchai, P. & Ritchie, G.S.P. (1990). Zinc adsorption by a lateritic soil in the presence of organic ligands, Soil Science Society of America Journal, 54, 5, pp. 1242-1248.
  • 11. Chávez, M.L., Pablo, L.D. & García, T.A. (2010). Adsorption of Ba2+ by Ca-exchange clinoptilolite tuff and montmorillonite clay, Journal of Hazardous Materials, 175, 1-3, pp. 216-223, DOI: 10.1016/j.jhazmat.2009.09.151.
  • 12. Chen, Y.G., He, Y., Ye, W.M. & Jia, L.Y. (2015). Competitive adsorption characteristics of Na(I)/Cr(III) and Cu(II)/Cr(III) on GMZ bentonite in their binary solution, Journal of Industrial and Engineering Chemistry, 26, pp. 335-339, DOI: 10.1016/j.jiec.2014.12.006.
  • 13. Chen, Y.G., He, Y., Ye, W.M., Lin, C.H., Zhang, X.F. & Ye, B. (2012). Removal of chromium (III) from aqueous solutions by adsorption on bentonite from Gaomiaozi, China, Environmental Earth Sciences, 67, 5, pp. 1261-1268, DOI: 10.1007/s12665-012-1569-3.
  • 14. Chen, Y.G., He, Y., Ye, W.M., Sui, W.H. & Xiao, M.M. (2013). Effect of shaking time, ionic strength, temperature and pH value on desorption of Cr(III) adsorbed onto GMZ bentonite, Transactions of Nonferrous Metals Society of China, 23, 11, pp. 3482-3489, DOI: 10.1016/S1003-6326(13)62892-7.
  • 15. Christensen, T.H., Kjeldsen, P., Bjerg, P.L., Jensen, D.L., Christensen, J.B., Baun, A., Albrechtsen, H.J. & Hern, H. (2001). Biogeochemistry of landfill leachate plumes, Applied Geochemistry, 16, pp. 659-718, DOI: 10.1016/S0883-2927(00)00082-2.
  • 16. Churchman, G.J., Gates, W.P., Theng, B.K.G. & Yuan, G. (2006). Clays and clay minerals for pollution control, in: Handbook of Clay Science, Bergaya, F., Theng, B.K.G. & Lagaly, G. (Eds.). Elsevier Ltd., Amsterdam, pp. 625-675.
  • 17. Cuevas, J., Ruiz, A.I., Soto, I.S.D., Sevilla, T., Jesús, R.P. & Silva, P.D. (2012). The performance of natural clay as a barrier to the diffusion of municipal solid waste landfill leachates, Journal of Environmental Management, 95(supp-S), pp. 175-181, DOI: 10.1016/j.jenvman.2011.02.014.
  • 18. Deveci, H. & Kar, Y. (2013). Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis, Journal of Industrial & Engineering Chemistry, 19, 1, pp. 190-196, DOI: 10.1016/j.jiec.2012.08.001.
  • 19. Du, Y.J. & Hayashi, S. (2006). A study on sorption properties of Cd2+ on Ariake clay for evaluating its potential use as a landfill barrier material, Applied Clay Science, 32, pp. 14-24, DOI: 10.1016/j.clay.2006.01.003.
  • 20. Duda, R. (2014). The influence of drainage wells barrier on reducing the amount of major contaminants migrating from a very large mine tailings disposal site, Archives of Environmental Protection, 40, 4, pp. 87-99, DOI: 10.2478/aep-2014-0041.
  • 21. Ghaemi, A., Torab-Mostaedi, M. & Ghannadi-Maragheh, M. (2011). Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder, Journal of Hazardous Materials, 190, 1-3, pp. 916-921, DOI: 10.1016/j.jhazmat.2011.04.006.
  • 22. Gładysz-Płaska, A., Majdan, M., Pikus, S. & Sternik, D. (2012). Simultaneous adsorption of chromium(VI) and phenol on natural red clay modified by HDTMA, Chemical Engineering Journal, 179, pp. 140-150, DOI: 10.1016/j.cej.2011.10.071.
  • 23. Glocheux, Y., Pasarín, M.M., Albadarin, A.B., Allen, S.J. & Walker, G.M. (2013). Removal of arsenic from groundwater by adsorption onto an acidified laterite by-product, Chemical Engineering Journal, 228, 28, pp. 565-574, DOI: 10.1016/j.cej.2013.05.043.
  • 24. Guerra, D.J.L., Mello, I., Freitas, L.R., Resende, R. & Silva, R.A.R. (2014). Equilibrium, thermodynamic, and kinetic of Cr(VI) adsorption using a modified and unmodified bentonite clay, International Journal of Mining Science and Technology, 24, 4, pp. 525-535, DOI: 10.1016/j.ijmst.2014.05.017.
  • 25. He, Y., Chen, Y.G. & Ye, W.M. (2016). Equilibrium, kinetic, and thermodynamic studies of adsorption of Sr(II) from aqueous solution onto GMZ bentonite, Environmental Earth Sciences, 75, 9, pp. 807-817, DOI: 10.1007/s12665-016-5637-y.
  • 26. He, Y., Li, B.B., Zhang, K.N., Li, Z., Chen, Y.G. & Ye, W.M. (2019). Experimental and numerical study on heavy metal contaminant migration and retention behavior of engineered barrier in tailings pond, Environmental Pollution, 252, pp. 1010-1018, DOI: 10.1016/j.envpol.2019.06.072.
  • 27. Iriel, A., Bruneel, S.P., Schenone, N. & Cirelli, A.F. (2018). The removal of fluoride from aqueous solution by a lateritic soil adsorption: kinetic and equilibrium studies, Ecotoxicology and Environmental Safety, 149, pp. 166-172, DOI: 10.1016/j.ecoenv.2017.11.016.
  • 28. Jabłońska-Czapla, M., Szopa, S. & Rosik-Dulewska, C. (2014). Impact of mining dump on the accumulation and mobility of metals in the Bytomka river sediments, Archives of Environmental Protection, 40, 2, pp. 3-19, DOI: 10.2478/aep-2014-0013.
  • 29. Ji, M., Su, X., Zhao, Y.X., Qi, W.F., Wang, Y., Chen, G.Y. & Zhang, Z.Y. (2015). Effective adsorption of Cr(VI) on mesoporous Fe-functionalized Akadama clay: optimization, selectivity, and mechanism, Applied Surface Science, 344, pp. 128-136, DOI: 10.1016/j.apsusc.2015.03.006.
  • 30. Kamagate, M., Assadi, A.A., Kone, T., Giraudet, S. & Hanna, K. (2017). Use of laterite as a sustainable catalyst for removal of fluoroquinolone antibiotics from contaminated water, Chemosphere, 195, 847, pp. 847-853, DOI: 10.1016/j.chemosphere.2017.12.165.
  • 31. Kaoser, S., Barrington, S., Elektorowicz, M. & Wang, L. (2005). Effect of Pb and Cd on Cu adsorption by sand-bentonite liners, Canadian Journal of Civil Engineering, 32, pp. 241-249.
  • 32. Khan, S.A., Riaz-ur-Rehman & Khan, M.A. (1995). Sorption of strontium on bentonite, Waste Manage, 15, 8, pp. 641-650, DOI:10.1016/0956-053X(96)00049-9.
  • 33. Koutsopoulou, E., Papoulis, D., Tsolis-Katagas, P. & Kornaros, M. (2010). Clay minerals used in sanitary landfills for the retention of organic and inorganic pollutants, Applied Clay Science, 49, 4, pp. 372-382, DOI: 10.1016/j.clay.2010.05.004.
  • 34. Lalhmunsiama, T.D. & Lee, S.M. (2015). Physico-chemical studies in the removal of Sr(II) from aqueous solutions using activated sericite, Journal of Environmental Radioactivity, 147, pp. 76-84, DOI: 10.1016/j.jenvrad.2015.05.017.
  • 35. Li, W., Tang, Y., Zeng, Y., Tong, Z., Liang, D. & Cui, W. (2012). Adsorption behavior of Cr(VI) ions on tannin-immobilized activated clay, Chemical Engineering Journal, 193-194, pp. 88-95, DOI: 10.1016/j.cej.2012.03.084.
  • 36. Li, Z. & Gallus, L. (2007). Adsorption of dodecyl trimethylammonium and hexadecyl trimethylammonium onto kaolinite-competitive adsorption and chain length effect, Applied Clay Science, 35, pp. 250-257, DOI: 10.1016/j.clay.2006.09.004.
  • 37. Lv, G., Li, Z., Jiang, W.T., Ackley, C., Fenske, N. & Demarco, N. (2014). Removal of Cr(VI) from water using Fe(II)-modified natural zeolite, Chemical Engineering Research & Design, 92, 2, pp. 384-390, DOI: 10.1016/j.cherd.2013.08.003.
  • 38. Mesci, B. (2011). Adsorptive removal of zinc by bentonite: application of time series modeling method, Archives of Environmental Protection, 37, 3, pp. 101-113.
  • 39. Missana, T. & García-Gutierréz, M. (2007). Adsorption of bivalent ions (Ca(II), Sr(II) and Co(II)) onto FEBEX bentonite, Physics and Chemistry of the Earth, 32, pp. 559-567, DOI: 10.1016/j.pce.2006.02.052.
  • 40. El-sayed, M.E.A., Moustafa, M.R., Khalaf, D.G. & James, A. (2019). Assessment of clay mineral selectivity for adsorption of aliphatic/aromatic humic acid fraction, Chemical Geology, 511, pp. 21-27, DOI: 10.1016/j.chemgeo.2019.02.034.
  • 41. Mohapatra, M., Khatun, S. & Anand, S. (2009). Kinetics and thermodynamics of lead (II) adsorption on lateritic nickel ores of Indian origin, Chemical Engineering Journal, 155, pp. 184-190, DOI: 10.1016/j.cej.2009.07.035.
  • 42. Nayanthika, I., Jayawardana, D.T., Bandara, N., Manage, P.M. & Madushanka, R. (2018). Effective use of iron-aluminum rich laterite based soil mixture for treatment of landfill leachate, Waste Management, 74, pp. 347-361, DOI: 10.1016/j.wasman.2018.01.013.
  • 43. Nga, N.T.H. (2013). Application of volcanic ash soil and laterite to water treatment, Thesis for the Laboratory of Environmental Geochemistry, Department of Agro-Environmental Sciences, Kyushu University, Japan.
  • 44. Nityanandi, D. & Subbhuraam, C.V. (2009). Kinetics and thermodynamic of adsorption of chromium (VI) from aqueous solution using puresorbe, Journal of Hazardous Materials, 170, pp. 876-882, DOI: 10.1016/j.jhazmat.2009.05.049.
  • 45. Orta, M.M., Martín, J., Medina-Carrasco, S., Santos, J.L., Aparicio, I. & Alonso, E. (2019). Adsorption of propranolol onto montmorillonite: kinetic, isotherm and pH studies, Applied Clay Science, 173, pp. 107-114, DOI: 10.1016/j.clay.2019.03.015.
  • 46. Özcan, A.S., Gök, Ö. & Özcan, A. (2009). Adsorption of lead (II) ions onto 8-hydroxy quinoline-immobilized bentonite, Journal of Hazardous Materials, 161, 1, pp. 499-509, DOI: 10.1016/j.jhazmat.2008.04.002.
  • 47. Pérez-Marín, A.B., Meseguer, Z.V., Ortuño, J.F., Aguilar, M., Sáez, J. & Lloréns, M. (2007). Removal of cadmium from aqueous solutions by adsorption onto orange waste, Journal of Hazardous Materials, 139, pp. 122-131, DOI: 10.1016/j.jhazmat.2006.06.008.
  • 48. Putthividhya, A. (2008). Competitive sorption of multiple component heavy metals from gold mining leachate onto laterite soil, Lowland Technology International, 10, 1, pp. 54-64.
  • 49. Raouf, M.W.A. & El-Kamash, A.M. (2006). Kinetics and thermodynamics of the sorption of uranium and thorium ions from nitric acid solutions onto a TBP-impregnated sorbent, Journal of Radioanalytical & Nuclear Chemistry, 267, 2, pp. 389-395, DOI: 10.1007/s10967-006-0060-6.
  • 50. Reddy, K.R., Xie, T. & Dastgheibi, S. (2014). Removal of heavy metals from urban stormwater runoff using different filter materials, Journal of Environmental Chemical Engineering, 2, 1, pp. 282-292, DOI: 10.1016/j.jece.2013.12.020.
  • 51. Sánchez-Jiménez, N., Gismera, M.J., Sevilla, M.T., Cuevas, J., Rodríguez-Rastrero, M. & Procopio, J.R. (2012). Clayey materials as geologic barrier in urban landfills: comprehensive study of the interaction of selected quarry materials with heavy metals, Applied Clay Science, 56, pp. 23-29, DOI: 10.1016/j.clay.2011.11.016.
  • 52. Saravanan, A., Jayasree, R., Hemavathy, R.V., Jeevanantham, S., Hamsini, S., Senthil, K.P., Yaashikaa, P.R., Manivasagan, V. & Yuvaraj, D. (2019). Phytoremediation of Cr(VI) ion contaminated soil using Black gram (Vigna mungo): Assessment of removal capacity, Journal of Environmental Chemical Engineering, 7, p. 103052, DOI: 10.1016/j.jece.2019.103052.
  • 53. Seyram, S.A. (2014). Assessing the potential of laterite in adsorbing cadmium from mine leachate and surrogate cadmium solutions: A case study at Anglo gold Ashanti Iduaperiem gold mine LTD, Tarkwa, Thesis for Kwame Nkrumah University of Science and Technology, Kumasi.
  • 54. Sezer, G.A., Türkmenoglu, A.G. & Göktürk, E.H. (2003). Mineralogical and sorption characteristics of Ankara Clay as a landfill liner, Applied Geochemistry, 18, pp. 711-717, DOI: 10.1016/S0883-2927(02)00178-6.
  • 55. Silveira, M.L.A., Alleoni, L.R.F. & Guilherme, L.R.G. (2003). Review: bio-solids and heavy metals in soils, Scientia Agricola, 60, pp. 793 -806.
  • 56. Smičiklas, I., Dimović, S. & Plećaš, I. (2007). Removal of Cs1+, Sr2+ and Co2+ from aqueous solutions by adsorption on natural clinoptilolite, Applied Clay Science, 35, pp. 139-144, DOI: 10.1016/j.clay.2006.08.004.
  • 57. Sudha, R.K., Srinivas, B., Gourunaidu, K. & Ramesh, K.V. (2018). Removal of copper by adsorption on treated laterite, Materials Today: Proceedings, 5, 1, pp. 463-469, DOI: 10.1016/j.matpr.2017.11.106.
  • 58. Suponik, T. & Lutyński, M. (2009). Possibility of using permeable reactive barrier in two selected dumping sites, Archives of Environmental Protection, 35, 3, pp. 109-122.
  • 59. Suponik, T., Popczyk, M. & Pierzyna, P. (2017). The sorption of metal ions on nanoscale zero-valent iron, E3S Web of Conferences, 18, pp. 10-19, DOI: 10.1051/e3sconf/201712301019.
  • 60. Syama, I.J., Thalla, A.K. & Manu, D.S. (2015). Performance of laterite soil grains as adsorbent in the removal of chromium, Current World Environment, 10, 1, pp. 270-280, DOI: 10.12944/CWE.10.1.33.
  • 61. Tajar, A.F., Kaghazchi, T. & Soleimani, M. (2009). Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells, Journal of Hazardous Materials, 165, pp. 1159-1164, DOI: 10.1016/j.jhazmat.2008.10.131.
  • 62. Wallace, S.H., Shaw, S., Morris, K., Small, J.S., Fuller, A.J. & Burke, I.T. (2012). Effect of groundwater pH and ionic strength on strontium sorption in aquifer sediments: implications for Sr-90 mobility at contaminated nuclear sites, Applied Geochemisty, 27, pp. 1482-1491, DOI: 10.1016/j.apgeochem.2012.04.007.
  • 63. Wu, P.X., Dai, Y.P., Long, H., Zhu, N.W., Li, P., Wu, J.H. & Dang, Z. (2012). Characterization of organo-montmorillonites and comparison for Sr(II) removal: equilibrium and kinetic studies, Chemical Engineering Journal, 191, pp. 288-296, DOI: 10.1016/j.cej.2012.03.017.
  • 64. Zhang, L., Hong, S., He, J., Gan, F. & Ho, Y.S. (2011). Adsorption characteristic studies of phosphorus onto laterite, Desalination and Water Treatment, 25, pp. 98-105, DOI: 10.5004/dwt.2011.1871.
  • 65. Zhao, Y., Shao, Z.Y., Chen, C.L., Hu, J. & Chen, H.L. (2014). Effect of environmental conditions on the adsorption behavior of Sr(II) by Na-rectorite, Applied Clay Science, 87, pp. 1-6, DOI: 10.1016/j.clay.2013.11.021.
  • 66. Zhou, D.M. & Chen, H.M. (2000). Cr(VI) adsorption on four typical soil colloids: equilibrium and kinetics, Journal of Environmental Sciences, 12, 3, pp. 325-329.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a595cfc7-ec42-4626-bccb-6963be308d2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.