PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the Groundwater in Erbil Basin with Support of Visual MODFLOW

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Groundwater stands as a crucial lifeline in numerous regions across the globe, a significance magnified in water-scarce locales like the Middle East. With depleting water resources exacerbated by global climate change, the imperative for sustainable groundwater management becomes increasingly urgent. This research employs a groundwater flow modeling approach, utilizing Visual MODFLOW (version 4.6.0.166), to scrutinize the present state and future security risks of groundwater resources in the Erbil basin. A distinct aspect of this study involves investigating the interaction between the groundwater aquifers of Greater Zab and Lesser Zab Rivers, along with an exploration of the Erbil aquifers, rivers interaction and recharge zones as a second novelty in this research. The model, calibrated for heterogenous anisotropic unconfined aquifer transient conditions, exhibits a high correlation coefficient (CC) of 0.997 during calibration and 0.985 in the validation process respectively. Findings indicate a general groundwater flow direction from northeast to southwest in the Erbil basin, aligning with surface observations. Despite groundwater aquifers supplying only 55% of the current water demand from the existing wells, the computed balance reveals river leakages of 33,432 m3/day into the aquifers. The study forecasts a substantial increase in the dry area of the groundwater aquifer under climate change scenarios, especially when recharge rates diminish. To mitigate these impacts, the study recommends preventing illegal well drilling and implementing continuous monitoring using distributed sensors. The insights gleaned from this research are anticipated to furnish essential information for sustainable planning and effective management of groundwater resources in the Erbil basin and its environs.
Rocznik
Strony
203--227
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Civil Engineering Department, College of Engineering, Salahaddin University-Erbil, 44002, Iraq
  • Civil Engineering Department, College of Engineering, Salahaddin University-Erbil, 44002, Iraq University of Kurdistan Hawler, 30M Avenue, Erbil, Iraq
Bibliografia
  • 1. Baalousha, H. Fundamentals of groundwater modelling. Groundwater: Modelling, Management and Contamination. Konig, LF, Weiss, JL, Eds 2009, 149-166.
  • 2. Zwain, H.H.; Abed, B.S. Groundwater flow modeling and hydraulic assessment of Al-Ruhbah region, Iraq. Journal of the Mechanical Behavior of Materials 2023, 32(1), 20220214.
  • 3. Ali, S.M.; Oleiwi, A.S. Modelling of groundwater f low of Khanaqin Area, Northeast Iraq. Iraqi Bulletin of Geology and Mining 2015, 11(3), 83-94.
  • 4. Neupane, P.K.; Mondal, N.C.; Manglik, A. Envisaging the sustainability of an aquifer by developing groundwater flow model for a part of Choutuppal Mandal, Nalgonda District, Telangana, India. Nepal Journal of Science and Technology 2020, 19(1), 222-233.
  • 5. Hussien, B.M. Management of groundwater resources in Dhabaa Site-West Iraq. Iraqi Journal of Desert Studies 2012, 4(1).
  • 6. Kumar, G.P.; Kumar, P.A. Development of groundwater flow model using visual MODFLOW. International Journal of Advanced Research 2014, 2(6), 649-656.
  • 7. Ghosh, N.; Karmakar, T.; Raja Sekhar, G.P. Application of conformal mapping to two-dimensional flows in an anisotropic aquifer. Indian Journal of Pure and Applied Mathematics 2022, 53(3), 617-626.
  • 8. Pathak, D. Groundwater flow modeling in an intermontane basin. Journal of Nepal Geological Society 2015, 49(1), 7-15.
  • 9. Bayat, M.; Eslamian, S.; Shams, G.; Hajiannia, A. Groundwater level prediction through GMS software–case study of Karvan area, Iran. Quaestiones Geographicae 2020, 39(3), 139-145.
  • 10. Aderemi, B.A.; Olwal, T.O.; Ndambuki, J.M.; Rwanga, S.S. Groundwater resources management modelling: A review. Preprints 2021, 2021070227. https://doi.org/10.20944/preprints202107.0227.v2
  • 11. Hariharan, V.; Shankar, M.U. A review of visual MODFLOW applications in groundwater modelling. In: IOP Conference Series: Materials Science and Engineering 2017, 263(3), 032025, IOP Publishing.
  • 12. Navarro-Farfán, M.D.M.; García-Romero, L.; Martínez-Cinco; M.A., Hernández-Hernández, M.A.; Sánchez-Quispe, S.T., 2024. Comparison between MODFLOW groundwater modeling with traditional and distributed recharge. Hydrology 2024, 11(1), 9.
  • 13. Elçi, A.L.P.E.R.; Meisina, C.; Guardiola-Albert, C.; Tomas, R.; Teatini, P.; Valdes-Abellan, J.; Shatanawi, K.; Letterio, T.; Ören, A.L.İ., Groundwater f low modeling for investigation of exploitation induced land subsidence. IAH 50th Worldwide Groundwater Congress, Cape-Town, South Africa, 18 - 22 September 2023, 1.
  • 14. Kumar, C.P. Numerical modelling of ground water f low using MODFLOW. Indian Journal of Science 2013, 2(4), 86-92.
  • 15. Barbosa, S.A.; Jones, N.L.; Williams, G.P.; Mamane, B.; Begou, J.; Nelson, E.J.; Ames, D.P. Exploiting earth observations to enable groundwater modeling in the data-sparse Region of Goulbi Maradi, Niger. Remote Sensing 2023, 15(21), 5199.
  • 16. Mohammed, K.S.; Shabanlou, S.; Rajabi, A.; Yosefvand, F.; Izadbakhsh, M.A. Prediction of groundwater level fluctuations using artificial intelligencebased models and GMS. Applied Water Science 2023, 13(2), 54.
  • 17. Ngo, T.M.L.; Wang, S.J. Chen, P.Y. Assessment of future climate change impacts on groundwater recharge using hydrological modeling in the Choushui River Alluvial Fan, Taiwan. Water 2024, 16(3), 419.
  • 18. Di Salvo, C. Groundwater Hydrological Model Simulation. Water 2023, 15(4), 822.
  • 19. Behera, A.K.; Pradhan, R.M.; Kumar, S.; Chakrapani, G.J.; Kumar, P. Assessment of groundwater f low dynamics using MODFLOW in shallow aquifer system of mahanadi delta (east coast), India. Water 2022, 14(4), 611.
  • 20. Lin, Y.P.; Chen, Y.W.; Chang, L.C.; Yeh, M.S.; Huang, G.H.; Petway, J.R. Groundwater simulations and uncertainty analysis using MODFLOW and geostatistical approach with conditioning multiaquifer spatial covariance. Water 2017, 9(3), 164.
  • 21. Navarro-Farfán, M.D.M.; García-Romero, L.; Martínez-Cinco, M.A.; Hernández-Hernández, M.A.; Sánchez-Quispe, S.T.; Comparison between MODFLOW groundwater modeling with traditional and distributed recharge. Hydrology 2024, 11(1), 9.
  • 22. Hamdi, M.; Goïta, K. Analysis of groundwater depletion in the saskatchewan river basin in canada from coupled SWAT-MODFLOW and satellite gravimetry. Hydrology 2023, 10(9), 188.
  • 23. Vengust, A.; Koroša, A.; Urbanc, J.; Mali, N. Development of groundwater flow models for the integrated management of the alluvial aquifer systems of Dravsko polje and Ptujsko polje, Slovenia. Hydrology 2023, 10(3), 68.
  • 24. Gobezie, W.J.; Teferi, E.; Dile, Y.T.; Bayabil, H.K.; Ayele, G.T.; Ebrahim, G.Y. Modeling surface watergroundwater interactions: evidence from borkena catchment, Awash River Basin, Ethiopia. Hydrology 2023, 10(2), 42.
  • 25. Nanekely, M.; Scholz, M.; Aziz, S.Q. Towards sustainable management of groundwater: A case study of semi-arid area, Iraqi Kurdistan region. European Water 2017, 57, 451-457.
  • 26. Mawlood, D.K. Sustainability of Aquifer and Ground Water Condition in Erbil Basin/Iraq. ZANCO journal of pure and applied sciences 2019, 31(6).
  • 27. Jwan, S.M.; Salah, F.S.A.; Shuokr, Q.A. Assessment of sustainability and management for groundwater source in Erbil city. Recycling and Sustainable Development 2021, 14(1), 41-50.
  • 28. Mustafa, J.S.; Mawlood, D.K. Mapping groundwater levels in Erbil Basin. Am. Sci. Res. J. Eng. Technol. Sci 2023, 93, 21-38.
  • 29. Shekhmamundy IH; Surdashy AM. Geomorphological analysis and distribution of landform of Erbil Masterplan Layout. The Iraqi Geological Journal 2022, 55(2F), 197-211. https,//doi.org/10.46717/ igj.55.2F.14ms-2022-12-29.
  • 30. Mohammed A., F.; Q Smail, S. A.; Kettanah, Y. Environmental significance of major and trace elements in the soils of selected areas in Erbil City, Kurdistan Region, Northern Iraq. Iraqi National Journal of Earth Science 2013, 13(2), 15-32.
  • 31. McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model. US Geological Survey Technical Manual of Water Resources Investigation, Book 6; USGS: Reston, VA, USA, 1988.
  • 32. Yidana, S.; Chegbeleh, L. The hydraulic conductivity field and groundwater flow in the unconfined aquifer system of the Keta Strip, Ghana. J. Afr. Earth Sci. 2013, 86, 45–52.
  • 33. Anderson, M.P.; Woessner, W.W. Applied Groundwater Modeling: Simulation of Flow and Advective Transport; Academic Press. 2nd Edition; SanDiego, CA, USA, 2015.
  • 34. Kadaverugu, R.; Dhyani, S.; Dasgupta, R.; Kumar, P.; Hashimoto, S.; Pujari, P. Multiple values of Bhitarkanika mangroves for human well-being: Synthesis of contemporary scientific knowledge for mainstreaming ecosystem services in policy planning.J. Coast. Conserv. 2021, 25, 1–15.
  • 35. Hassan, H.A. 1981. Hydrogeological Conditions of the Central Part of Erbil Basin. Ph.D. Thesis, University of Baghdad. (unpublished)
  • 36. Hassan, I.O.1998. Urban Hydrology of Erbil City Region. Degree of doctor of philosophy in geology (hydrogeology), University of Baghdad. (unpublished)
  • 37. Shwani, S. O. I. 2008. Hydrogeology and hydrochemistry of bashtapa sub-basin in Erbil Governorate Kurdistan Region – Iraq. Degree of Master of Science in Geology, Salahaddin University.
  • 38. Al-Kakey O. 2014. Prediction of the most suitable sites for artificial groundwater recharge using integrated GIS and AHP techniques in Erbil district, Kurdistan region of Iraq. Degree of Master of Groundwater Management. Institute for Geologic lehrstuhi for hydrogeologie, Technische Universitat Bergakademie Freiberg.
  • 39. Kareem, H., 2018, Study of Water Resources by Using 3D Groundwater Modelling in Al-Najaf Region, Iraq, Doctoral dissertation, Cardiff University.
  • 40. Al-Kubaisi, Q.Y., Hussain, T.A., Ismail, M.M., & AbdUlkareem, F.A. 2019. Estimation of water balance for the central basin of Erbil plain (north of Iraq). Engineering and Technology Journal, 37(1), 22-28.
  • 41. Parson, R.M., 1955. Groundwater Resources of Iraq. Vol. 6, Erbil Liwa, Development Board, MOD, Iraq, 142 P. (unpublished)
  • 42. Haddad, R.H., Smoor, B.P., Basho, D.Y., Sarbaro, S.K., Demerchi, M.S. 1974. Groundwater Resources of Erbil Area. IARNR, Tech. Bull., No. 70, 76.
  • 43. Chnaraye M.A.H., (2003), Hydrogeology and Hydrochemistry of Kapran Basin Erbil-N-of Iraq, Degree of Doctor of Philosophy in Geology. University of Baghdad. (unpublished)
  • 44. Middlemis, H., 2001. Murray-Darling Basin Commission groundwater flow modelling guideline. Aquaterra Consulting Pty Ltd., Perth.
  • 45. Yeh, W.W.G. and Tauxe, G.W. 1971. Optimal identification of aquifer diffusivity using quasilinearization. Water Resources Research 7(4), 955-962.
  • 46. Cooley, R.L. and Sinclair, P.J. 1976. Uniqueness of a model of steady-state groundwater flow. Journal of Hydrology 31(3–4), 245-269.
  • 47. Cooley, R.L. 1979. A method of estimating parameters and assessing reliability for models of steady state groundwater flow, 2. Application of statistical analysis. Water Resources Research 15(3), 603-617.
  • 48. Ganesan, M. and Isabella, M.M. 2013. Estimation of hydraulic conductivity and dispersivity through numeric modelling. Journal of Groundwater Research 2(1), 79-90.
  • 49. Yangxiao, Z. and Van Geer, F.C. 1992. KALMOD, a stochastic-deterministic model for simulating groundwater flow with kalman filtering. Hydrological Sciences Journal 37(4), 375-389.
  • 50. Karakostas, C. Z. and Manolis, G.D. 1998. Stochastic boundary element solution applied to groundwater flow. Engineering Analysis with Boundary Elements 21(1), 9-21.
  • 51. Hamad, R. 2022. Erbil Basin Groundwater Recharge Potential Zone Determination Using FuzzyAnalytical Hierarchy Process (AHP).
  • 52. Dizayee, R. 2018. Effects of Illegal wells on groundwater level in the central sub-basin, Erbil Basin, Erbil, Kurdistan Region-Iraq. American Academic Scientific Research Journal for Engineering, Technology, and Sciences, 39(1), 244-249.
  • 53. Yashooa, N. K., & Mawlood, D. K. (2023). Modeling contamination transport (nitrate) in Central Basin Erbil, Kurdistan Region, Iraq with Support of MODFLOW Software. The Iraqi Geological Journal, 234-246.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5903f53-816a-45d9-ba45-f9b61f460b00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.