PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Specimens' Height to Diameter Ratio on Unconfined Compressive Strength of Cohesive Soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The undrained shear strength (Su) and cohesion (Cu) of cohesive soils are frequently determined using an unconfined compression test. However, the test results are heavily dependent on specimen size. This causes uncertainty in geotechnical analyses, constitutive models, and designs by overestimating or underestimating the shear strength of cohesive soils. Therefore, the study aims to assess the effect of the height-to-diameter ratio on the unconfined compressive strength (UCS) of cohesive soil. The soil specimen was tested on a compacted cylindrical specimen at the maximum dry density and optimum moisture content with a height to diameter (H/D) ratio of 1–3 for 38, 50, and 100 mm specimen diameters. Disturbed sample specimens were considered for the laboratory program. Accordingly, the standard Proctor compaction test determines soil classification and compaction characteristics. The unconfined compression test was performed for undisturbed and compacted remolded states of various diameters of cohesive soil specimens to investigate the strength variation with the specimen variation in H/D ratio. The laboratory test results revealed that cohesive soil’s unconfined compression strength value drops rapidly with height-to-diameter ratios and the soil specimens’ diameter increases. However, the UCS value was stable at H/D ratio from 1.75 to 2.25. As the specimens’ diameter and H/D ratio increased, the peak UCS value axial strain decreased. Similarly, the gap between the axial strains of peak UCS value for the smallest and the most significant H/D ratio decreased with increase in the specimens’ diameter.
Wydawca
Rocznik
Strony
112--132
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Po Box 378, Jimma 47, Ethiopia
  • Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Po Box 378, Jimma 47, Ethiopia
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
  • Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Po Box 378, Jimma 47, Ethiopia
  • Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Po Box 378, Jimma 47, Ethiopia
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • [1] Güneyli, H., Rüşen, T.: Effect of length-to-diameter ratio on the unconfined compressive strength of cohesive soil specimens. Bull. Eng. Geol. Environ. 75, 793–806 (2016). https://doi. org/10.1007/s10064-015-0835-5
  • [2] Yilmaz, Y., Eun, J., Panahi, S.S., Mousavi, M.S.: Effects of height-to-diameter ratio (H/D) for specimens with various water contents on unconfined compressive strength of a clayey soil. Eng. Geol. 257, 105136 (2019). https://doi.org/10.1016/j. enggeo.2019.05.013
  • [3] Wang, N., Zhang, J., Liao, R., Lv, R., Zhang, L., He, F.: Study on the Size Effect of Unconfined Compressive Strength of Rammed Earthen Site’s Soil Samples. J. Mater. Civ. Eng. 32, 4019343 (2020). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003009
  • [4] ASTM, D.: 2166/D 2166M (2013) Standard test method for unconfined compressive strength of cohesive soil. ASTM Int. West Conshohocken.
  • [5] Dhani, N., Gasruddin, A., Hartini, H., Baride, L.: Unconfined Compressive Strength Characteristics of Overboulder Asbuton and Zeolite Stabilized Soft Soil. Civ. Eng. J. 7, 40–48 (2021). https://doi.org/10.28991/cej-2021-03091635
  • [6] ASTM: ASTM D2166 – 06: Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. , West Conshohocken (2007)
  • [7] Standard, B.: BS 1377-7, Methods of test for Soils for civil engineering purposes-Part 7: Shear strength tests (total stress). London UK Br. Stand. Ist. (1999)
  • [8] Standard, B.: Methods of tests for stabilized soils. Br. Stand. Institute, London. (1990)
  • [9] Türk Standardlari Enstitüsü: Methods of testing soils for civil engineering purposes in the laboratory - Part 2: Determination of mechanical properties. (2006)
  • [10] Kalinski, M.E.: Soil mechanics: lab manual. John Wiley & Sons (2011)
  • [11] Moores, E.R., Hoover, J.M.: The Influence of Slenderness Ratios on Triaxial Shear Testing. In: Proceedings of the Iowa Academy of Science. pp. 285–292 (1966)
  • [12] Verveckaite, N., Amsiejus, J., Stragys, V.: Stress ‐ strain analysis in the soil sample during laboratory testing. J. Civ. Eng. Manag. XIII, 63–70 (2007). https://doi.org/10.1080/13923 730.2007.9636420
  • [13] Ghosh, R.: Effect of soil moisture in the analysis of undrained shear strength of compacted clayey soil. J. Civ. Eng. Constr. Technol. 4, 23–31 (2013). https://doi.org/10.5897/JCECT12.070
  • [14] Omar, T., Sadrekarimi, A.: Effect of Triaxial Specimen Size on Engineering Design and Analysis. Int. J. Geo-Engineering. (2015). https://doi.org/10.1186/s40703-015-0006-3
  • [15] Ang, E.C., Loehr, J.E.: Specimen size effects for fiber-reinforced silty clay in unconfined compression. Geotech. Test. J. 26, 191–200 (2003). https://doi.org/10.1520/GTJ11320J
  • [16] Shogaki, T.: Effect of specimen size on unconfined compressive strength properties of natural deposits. Soils Found. 47, 119–129 (2007). https://doi.org/10.3208/sandf.47.119
  • [17] Matsuo, M., Shogaki, T.: Effects of plasticity and sample disturbance on statistical properties of undrained shear strength. Soils Found. 28, 14–24 (1988). https://doi. org/10.3208/sandf1972.28.2_14
  • [18] Al-Rkaby, A.H.J., Alafandi, Z.M.S.: Size effect on the unconfined compressive strength and Modulus of elasticity of limestone rock. Electron. J. Geotech. Eng. 20, 1393–1401 (2015)
  • [19] Verveckaite, N., Amsiejus, J., Stragys, V.: Stress‐strain analysis in the soil sample during laboratory testing. J. Civ. Eng. Manag. 13, 63–70 (2007)
  • [20] Skuodis, Š., Dirgėlienė, N., Lekstutytė, I.: Change of soil mechanical properties due to triaxial sample size. (2019). https://doi.org/10.3846/mbmst.2019.006
  • [21] Smith, G.N.: Probability and statistics in civil engineering. Collins Prof. Tech. books. 244, (1986)
  • [22] ASTM. (2007a). ASTM D 698 – 07: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort ( 12 400 ft-lbf / ft 3 ( 600 kN-m / m 3 )) 1. In Annual Book of ASTM Standards (Vol. 3, pp. 1–13). Annual book of ASTM standards.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a58f6ea3-d0c2-4770-ad9d-129d08fe93c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.