PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Developing a Model of Peripheral Nerve Graft Based on Natural Polymers

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Opracowanie modelu protezy nerwu obwodowego z polimeru naturalnego
Języki publikacji
EN
Abstrakty
EN
Presented are the results of investigations into the preparation of a peripheral nerve prosthesis. The prosthesis is built up of a multichannel core having a diameter of 2 to 5 mm. The core prepared by freeze drying is housed in a polymeric sleeve. The prosthesis core is made of microcrystalline chitosan (MCCh) while the sleeve is prepared from poly(DL-lactide-coglycolide) copolymer. The usefulness of the prepared biomaterial was assessed by in vivo testing on animals.
PL
W pracy przedstawiono badania prowadzące do opracowania modelu protezy nerwu obwodowego. Proteza zbudowana jest z wielokanałowego rdzenia o średnicy od 2 do 5 mm wytworzonego metodą liofilizacji i osadzonego w tulei polimerowej. Rdzeń protezy wytworzono z mikrokrystalicznego chitozanu (MKCh), natomiast tuleję stanowi błona uzyskana z resorbowalnego kopolimeru poli(DL-laktyd-ko-glikolid). Opracowany biomateriał poddano ocenie przydatności w warunkach in vivo z wykorzystaniem zwierząt.
Rocznik
Strony
115--120
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Poland, Łódź, Institute of Biopolymers and Chemical Fibres
  • biomater@ibwch.lodz.pl
  • Poland, Łódź, Institute of Biopolymers and Chemical Fibres
autor
  • Poland, Łódź, Institute of Biopolymers and Chemical Fibres
autor
  • Poland, Katowice, Medical University of Silesia, Department of Physiology
  • Poland, Katowice, Medical University of Silesia, Department of Physiology
  • Poland, Katowice, Medical University of Silesia, Department of Physiology
Bibliografia
  • 1. Battiston B, Geuna S, Ferrero M, Tos P. Nerve repair by means of tubulisation: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery. 2005; 25(4): 258-67.
  • 2. Suzuki Y, Tanihara M, Ohnishi K, Suzuki K, Endo K, Nishimura Y. Cat peripheral nerve regeneration across 50 mm gap repaired with a novel nerve guide composed of freeze-dried alginate gel. Neurosci Lett 1999, 259(2): 75-8.
  • 3. Rosales-Cortes M, Peregrina-Sandoval J, Banuelos-Pineda J, Sarabia-Estrada R, Gomez Rodiles CC, Albarran-Rodriguez E, Zaitseva GP, Pita-Lopez ML. Immunological study of a chitosan prosthesis in the sciatic nerve regeneration of the axotomised dog. J Biomater Appl. 2003, 18(1): 15-23.
  • 4. Wang X, Hu W, Cao Y, Yao J, Wu J, Gu X.: Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain 2005, 128(Pt 8): 1897-910.
  • 5. Williams LR, Danielsen N, Müller H et al..: Influence of the acellular fibrin matrix on nerve regeneration success within the silicon chamber model. In: The current status of peripheral nerve regeneration. Alan R Liss, Inc, 1988, pp. 111-122.
  • 6. Windebank AJ, Poduslo JF: Neuronal growth factors produced by adult peripheral nerve after injury. Brain Res 1986, 385: 197-200.
  • 7. Zimmermann M.: Pathobiology of neuropathic pain. Eur. J. Pharmacol 2001, 429: 23-37.
  • 8. Yan Q, Elliott Jl, Mathenson C et al..: Influences of neurotrophins on mammalian motor neurons in vivo. J Neurobiol 1993, 24: 1555-1577.
  • 9. Stoll G, Müller H: Nerve injury, axonal degeneration and neural regeneration: basic insight. Brain Pathol 1999, 9: 313-25.
  • 10. Yamaguchi I, Itoh S, Suzuki M, Osaka A, Tanaka J, The chitosan prepared from crab tendons: II. The chitosan/apatite composites and their application to nerve regeneration. Biomaterials 2003; 24: 3285-3292.
  • 11. Santos FX, Bilbao G, Rodrigo J et al.: Experimental model for local administration of nerve growth factor in microsurgical nerve reconnections. Microsurgery 1995, 16: 71-76.
  • 12. Hashimoto T, Suzuki Y, Kitada M, Kataoka K, Wu S, Suzuki K, Endo K, Nishimura Y, Ide C. Peripheral nerve regeneration through alginate gel: analysis of early outgrowth and late increase in diameter of regenerating axons. Exp Brain Res 2002, 146(3): 356-68.
  • 13. Qiang AO, Wang A, Cao W, Zhao Ch, GongY, Zhao N, Zhang X. Fabrication and characterisation of chitosan nerve conduits with microtubular architectures. Tsinghua Science and Technology ISSN 1007-0214 06/20 pp. 435-438 Vol 10, No 4, August 2005.
  • 14. Itoh S, Yamaguchi I, Suzuki M, Ichinose S, Takakuda K, Kobayashi H, Shinomiya K, Tanaka J. Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Res 2003; 993: 111-123.
  • 15. Itoh S, Yamaguchi I, Shinomiya K, Tanaka J. Development of the chitozan tube prepared from crab tendon for nerve regeneration, Sci Technol Adv Mater 2003; 4: 261-268.
  • 16. Novikov LN, Novikowa LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO. A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury, Biomaterials 2002; 23: 3369-3376
  • 17. Hert AM, Wiberg M, Terenghi G. Exogenous leukaemia inhibitory factor enhances nerve regeneration after late secondary repair using a bioartificial nerve conduit. Brit Assoc Plastic Surg 2003; 56: 444-450.
  • 18. Marcol W, Larysz-Brysz M, Kucharska M, Niekraszewicz A, Ślusarczyk W, Kotulska K, Właszczuk P, Właszczuk A, Jedrzejowska- Szypulka H, Lewin-Kowalik J: Reduction of post-traumatic neuroma and epineural scar formation in rat sciatic nerve by application of microcrystallic chitosan. Microsurgery 2011; 31(80): 642-649.
  • 19. Polish Patent PL 281975 (1989)
  • 20. Domszy JG, Roberts G: Macromol. Chemie, 1985, 186, 1671.
  • 21. Struszczyk H, J. Appl Polymer Sci. 1987, 33, 171.
  • 22. Polish Patent Appl. P-391898 (2010)
  • 23. Lu X, Richardson PM: J Neurosci 1991; 11: 972.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a58b0d65-2ccf-4988-9c44-9249050021da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.