PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photovoltaic systems - types of installations, materials, monitoring and modeling - review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Photovoltaic systems have become a common solution for, both small residential buildings as well as large service buildings. When buildings are being designed, it is important to focus on the aspect of the object's energy efficiency as lowering the energy consumption of a given facility is crucial. The article discusses the use of photovoltaic panels such as so-called BAPV (Building Applied Photovoltaics) and BIPV (Building Installed Photovoltaics) installations as well as photovoltaic thermal systems (PV/T), which generate both electricity and heat. The role of PV installation in so-called zero energy buildings and proposals for future research and solutions are also discussed.
Twórcy
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, 213 Wólczańska St., 90-924 Lodz, Poland
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, 213 Wólczańska St., 90-924 Lodz, Poland
Bibliografia
  • [1] D. Powell, I. Hischier, P. Jayathissa, B. Svetozarevic, A. Schlüter, A reflective adaptive solar faęade for multibuilding energy and comfort management. Energy & Buildings 177 (2018) 303-315.
  • [2] S. Freitas, C. Reinhart, M.C. Brito, Minimizing storage needs for large scale photovoltaics in the urban environment, Solar Energy 159 (2018) 375-389.
  • [3] R. Vanaga, A. Blumberga, R. Freimanis, T. Mols, D. Blumberga, Solar facade module for nearly zero energy building. Energy 157 (2018) 1025-1034.
  • [4] R. Venkateswari, S. Sreejith, Factors influencing the efficiency of photovoltaic system, Renewable and Sustainable Energy Reviews 101(2018) 376-394.
  • [5] Katalog produktów fotowoltaicznych 2015/16, Energy Partners.
  • [6] M. Mirzaei, M. Z. Mohiabadi, A comparative analysis of long-term field test of monocrystalline and polycrystalline PV power generation in semi-arid climate conditions, Energy for Sustainable Development 38 (2019) 93-101.
  • [7] M.J. Sorgato, K. Schneider, R. Rüther, Technical and economic evaluation of thin-film CdTe building integrated photovoltaics (BIPV) replacing faęade and rooftop materials in office buildings in a warm and sunny climate, Renewable Energy 118 (2018) 84-98.
  • [8] A. Bellazzi, L. Belussi, I. Meroni, Estimation of the performence of a BIPV facade in working conditions through real monitoring and simulation, 73rd Conference of the Italian Thermal Machines Engineering Association (ATI 2018), 12-14 September 2018, Pisa, Italy, Energy Procedia 148 (2018) 479-486.
  • [9] K. Irshad, K. Habib, R. Saidur, M.W. Kareem, B.B. Saha, Study of thermoelectric and photovoltaic facade system for energy efficient building development: A review, Journal of Cleaner Production 209 (2019) 1376-1395.
  • [10] Y. Li, Ch. Liu 2018, Techno-economic analysis for constructing solar photovoltaic projects on building envelopes, Building and Environment 127 (2018) 37-46.
  • [11] Y. Jia, G. Alva, G. Fang, Development and applications of photovoltaic-thermal systems: A review, Renewable and Sustainable Energy Reviews 102 (2018) 249-265.
  • [12] S.M. Sultan, M.N.E. Efzan, Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications. Solar Energy 173 (2018) 939-954.
  • [13] F. Calise, M. Dentice d'Accadia, A. Palombo, L. Vanoli, Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors, Energy 61 (2013) 72-86.
  • [14] H.A Zondag, D.W de Vries, W.G.J. van Helden, R.J.C. van Zolingen, A.A. van Steenhoven, The yield of different combined PV-thermal collector designs. Solar Energy 74 (2003) 253-269.
  • [15] A. Anduła, D. Heim, Productivity of PV facades in characteristic periods with different energy demand for lighting, Acta Innovations, no. 30, January 2019,16-23, ISSN 2300-5599.
  • [16] W.M.P.U. Wijeratne, R.J. Yang, E. Too, R. Wakefield, Design and development of distributed solar PV systems: Do the current tools work?. Sustainable Cities and Society 45 (2019) 553-578.
  • [17] M. Kovac, G. Stegnar, F. Al-Mansour, S. Merse, A. Pecjak, Assessing solar potential and battery instalment for self-sufficient buildings with simplified model, Energy 173 (2019) 1182-1195.
  • [18] A. Vulkan, I. Kloog, M. Dorman, E. Ereil, Modeling the potential for PV installation in residential buildings in dense urban areas, Energy & Buildings 169 (2018) 97-109.
  • [19] L. M. Castro, J.J. Rodriguez-Rodriguez, C. Martin-del-Campo, Modelling od PV systems as distributed energy resources for steady-state power flow studies. Electrical Power and Energy Systems 115 (2020) 1505505.
  • [20] D. Das, P. Kalita, A. Dewan, S.Tanweer, Development of a novel thermal model for a PV/T collector and its experimental analysis, Solar Energy 188 (2019) 631-643.
  • [21] S. R. Maadi, M. Khatibi, E. Ebrahimnia-Bajestan, D. Wood, Coupled thermal-optical numerical modeling of PV/T module - Combining CFD approach and two-band radiation DO model, Energy Conversion and Management 198 (2019) 111781.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a58ac6cf-824c-4362-9ff1-9abd4cabc46a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.