PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomechanical behavior of customized splint for the patient with temporomandibular disorders: A three-dimensional finite element analysis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mechanical overloading of temporomandibular joint (TMJ) is generally linked to temporomandibular disorders (TMD). However, in patients with a typical combination of maxillofacial morphology and occlusal features, the reduction of joint load and treatment with general occlusal splints are often ineffective. This study investigates the biomechanical behavior of the stomatognathic system in a TMD patient with personalized splints by finite element analysis. The therapeutic position, determined based on the intercuspal position, served as the basis for designing personalized customized splints. The design of occlusal contact and splint structure was evaluated in terms of their impact on the maximum stress level in the TMJ and the biting forces on the dentition. The relationship between joint stress and biting force was further examined during treatment with different customized splints. In preoperative case, there was a significant increase in stress level and stress concentration in the medial to posterior band of the articular disc. However, in all customized splint cases, the highest stress area shifted to the intermediate zone and exhibited a decrease. Notably, the bi-splints demonstrated superior ability in relieving overloading and balancing the occlusal force on both sides of the dentition, as verified by clinical treatment. The predictable simulated results offer valuable interactive information regarding TMJ overload, aiding doctors in making better-informed clinical decisions in future.
Twórcy
autor
  • College of Aerospace Engineering, Chongqing University, Chongqing, China
  • College of Aerospace Engineering, Chongqing University, Chongqing, China
autor
  • State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
autor
  • College of Aerospace Engineering, Chongqing University, Chongqing, China
autor
  • State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Bibliografia
  • [1] del Palomar AP, Doblare M. Finite element analysis of the temporomandibular joint during lateral excursions of the mandible. J Biomech 2006;39(12):2153-63.
  • [2] Sagl B, Schmid-Schwap M, Piehslinger E, Kronnerwetter C, Kundi M, Trattnig S, et al. In vivo prediction of temporomandibular joint disc thickness and position changes for different jaw positions. J Anat 2019;234(5):718-27.
  • [3] Tanaka E, Aoyama J, Tanaka M, Murata H, Hamada T, Tanne K. Dynamic properties of bovine temporomandibular joint disks change with age. J Dent Res 2002;81(9):618-22.
  • [4] Tanaka E, van Eijden T. Biomechanical behavior of the temporomandibular joint disc. Crit Rev Oral Biol Med 2003;14(2):138-50.
  • [5] Ortun-Terrazas J, Cegonino J, del Palomar AP. Biomechanical impact of the porous-fibrous tissue behaviour in the temporomandibular joint movements. An in silico approach. Journal of the Mechanical Behavior of Biomedical Materials 2021; 120:104542.
  • [6] Zheng F, Zhu Y, Gong Y, Yin D, Liu Y. Variation in stress distribution modified by mandibular material property: a 3D finite element analysis. Comput Methods Programs Biomed 2023;229:107310.
  • [7] W. Xu A. Yu Y. Jiang Y. Li C. Zhang H.-p. Singh et al. Gyroid-based functionally graded porous titanium scaffolds for dental application: Design, simulation and characterizations Materials & Design 2022;224:111300.
  • [8] de Ulloa JL, Gonzalez JE, Beltran AM, Peon Aves E, Rodriguez-Guerra J, Torres Y. Biomechanical behavior of customized scaffolds: A three-dimensional finite element analysis. Mater Des 2022;223:111173.
  • [9] Al-Jundi MA, John MT, Setz JM, Szentpetery A, Kuss O. Meta-analysis of treatment need for temporomandibular disorders in adult nonpatients. J Orofac Pain 2008;22 (2):97-107.
  • [10] Nilsson IM, List T, Drangsholt M. Prevalence of temporomandibular pain and subsequent dental treatment in Swedish adolescents. J Orofac Pain 2005;19(2): 144-50.
  • [11] Tanaka E, Detamore MS, Mercuri LG. Degenerative disorders of the temporomandibular joint: Etiology, diagnosis, and treatment. J Dent Res 2008;87 (4):296-307.
  • [12] LeResche L. Epidemiology of temporomandibular disorders: Implications for the investigation of etiologic factors. Crit Rev Oral Biol Med 1997;8(3):291-305.
  • [13] List T, Jensen RH. Temporomandibular disorders: Old ideas and new concepts. Cephalalgia 2017;37(7):692-704.
  • [14] Wang XD, Zhang JN, Gan YH, Zhou YH. Current understanding of pathogenesis and treatment of TMJ osteoarthritis. J Dent Res 2015;94(5):666-73.
  • [15] Wieckiewicz M, Boening K, Wiland P, Shiau YY, Paradowska-Stolarz A. Reported concepts for the treatment modalities and pain management of temporomandibular disorders. J Headache Pain 2015;16(1).
  • [16] Zimmerman BK, Bonnevie ED, Park M, Zhou Y, Wang L, Burris DL, et al. Role of interstitial fluid pressurization in TMJ lubrication. J Dent Res 2015;94(1):85-92.
  • [17] Huang GJ, Drangsholt MT, Rue TC, Cruikshank DC, Hobson KA. Age and third molar extraction as risk factors for temporomandibular. J Dent Res 2008;87(3): 283-7.
  • [18] Ingawale S, Goswami T. Temporomandibular joint: disorders, treatments, and biomechanics. Ann Biomed Eng 2009;37(5):976-96.
  • [19] Rodrigues Conti PC, dos Santos CN, Kogawa EM, de Castro Ferreira Conti AC, Pereira de Araujo CD. The treatment of painful temporomandibular joint clicking with oral splints: A randomized clinical trial. A randomized clinical trial. Journal of the American Dental Association 2006;137(8):1108-14.
  • [20] Glaros AG, Owais Z, Lausten L. Reduction in parafunctional activity: a potential mechanism for the effectiveness of splint therapy. J Oral Rehabil 2007;34(2): 97-104.
  • [21] Fricton J, Look JO, Wright E, Alencar FGP, Hong C, Lang M, et al. Systematic review and meta-analysis of randomized controlled trials evaluating intraoral orthopedic appliances for temporomandibular disorders. J Orofac Pain 2010;24(3): 237-54.
  • [22] Forssell H, Kalso E. Application of principles of evidence-based medicine to occlusal treatment for temporomandibular disorders: Are there lessons to be learned? J Orofac Pain 2004;18(1):9-22.
  • [23] Commisso MS, Martinez-Reina J, Mayo J. A study of the temporomandibular joint during bruxism. Int J Oral Sci 2014;6(2):116-23.
  • [24] Sagl B, Schmid-Schwap M, Piehslinger E, Kundi M, Stavness I. Effect of facet inclination and location on TMJ loading during bruxism: An in-silico study. J Adv Res 2022;35:25-32.
  • [25] Shu J, Xiong X, Chong DYR, Liu Y, Liu Z. The relations between the stress in temporomandibular joints and the deviated distances for mandibular asymmetric patients. Proc Inst Mech Eng Part H-J Eng Med 2021;235(1):109-16.
  • [26] Merema BBJ, Kraeima J, Glas HH, Spijkervet FKL, Witjes MJH. Patient-specific finite element models of the human mandible: Lack of consensus on current setups. Oral Dis 2021;27(1):42-51.
  • [27] Vukicevic AM, Zelic K, Milasinovic D, Sarrami-Foroushani A, Jovicic G, Milovanovic P, et al. OpenMandible: An open-source framework for highly realistic numerical modelling of lower mandible physiology. Dent Mater 2021;37(4): 612-24.
  • [28] Xiong X, Yin X, Liu F, Qin D, Liu Y. Magnetic resonance imaging-guided disccondyle relationship adjustment via articulation: a technical note and case series. J Int Med Res 2020;48(8).
  • [29] Zhang L, Shen L, Zhang L, Zhang C, Wang H. Dynamic 3D images fusion of the temporomandibular joints: A novel technique. J Dent 2022;126:104286.
  • [30] Aati S, Akram Z, Shrestha B, Patel J, Shih B, Shearston K, et al. Effect of post-curing light exposure time on the physico-mechanical properties and cytotoxicity of 3Dprinted denture base material. Dent Mater 2022;38(1):57-67.
  • [31] Zafar MS. Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers 2020;12(10):2299.
  • [32] Gholampour S, Gholampour H, Khanmohammadi H. Finite element analysis of occlusal splint therapy in patients with bruxism. BMC Oral Health 2019;19(1):1-9.
  • [33] Tanaka E, Rodrigo DP, Miyawaki Y, Lee K, Yamaguchi K, Tanne K. Stress distribution in the temporomandibular joint affected by anterior disc displacement: a three-dimensional analytic approach with the finite-element method. J Oral Rehabil 2000;27(9):754-9.
  • [34] Savoldelli C, Bouchard PO, Loudad R, Baque P, Tillier Y. Stress distribution in the temporo-mandibular joint discs during jaw closing: a high-resolution three-dimensional finite-element model analysis. Surg Radiol Anat 2012;34(5):405-13.
  • [35] Hart RT, Hennebel VV, Thongpreda N, Vanbuskirk WC, Anderson RC. Modeling the biomechanics of the mandible - A 3 - dimensional finite-element study. J Biomech 1992;25(3):261-86.
  • [36] Korioth TW, Hannam AG. Mandibular forces during simulated tooth clenching. J Orofac Pain 1994;8(2):178-89.
  • [37] Forster H, Fisher J. The influence of loading time and lubricant on the friction of articular cartilage. Proceedings of the Institution of Mechanical Engineers Part H, Journal of engineering in medicine 1996;210(2):109-19.
  • [38] Mabuchi K, Obara T, Ikegami K, Yamaguchi T, Kanayama T. Molecular weight independence of the effect of additive hyaluronic acid on the lubricating characteristics in synovial joints with experimental deterioration. Clin Biomech 1999;14(5):352-6.
  • [39] Sagl B, Schmid-Schwap M, Piehslinger E, Kundi M, Stavness I. A dynamic jaw model with a finite-element temporomandibular joint. Front Physiol 2019;10: 1156.
  • [40] Abe S, Kawano F, Kohge K, Kawaoka T, Ueda K, Hattori-Hara E, et al. Stress analysis in human temporomandibular joint affected by anterior disc displacement during prolonged clenching. J Oral Rehabil 2013;40(4):239-46.
  • [41] del Palomar AP, Doblare M. An accurate simulation model of anteriorly displaced TMJ discs with and without reduction. Med Eng Phys 2007;29(2):216-26.
  • [42] Hattori-Hara E, Mitsui SN, Mori H, Arafurue K, Kawaoka T, Ueda K, et al. The influence of unilateral disc displacement on stress in the contralateral joint with a normally positioned disc in a human temporomandibular joint: An analytic approach using the finite element method. J Craniomaxillofac Surg 2014;42(8): 2018-24.
  • [43] Koolstra JH, van Eijden T. Combined finite-element and rigid-body analysis of human jaw joint dynamics. J Biomech 2005;38(12):2431-9.
  • [44] Liu MQ, Lei J, Han JH, Yap AU, Fu KY. Metrical analysis of disc-condyle relation with different splint treatment positions in patients with TMJ disc displacement. J Appl Oral Sci 2017;25(5):483-9.
  • [45] Commisso MS, Martinez-Reina J, Ojeda J, Mayo J. Finite element analysis of the human mastication cycle. J Mech Behav Biomed Mater 2015;41:23-35.
  • [46] Li Z, Yang Z, Lan T, Zhao H, Liu Y. Worn is born: The role of the maxillo-mandibular relation in management of worn dentition. Med Hypotheses 2017;104: 156-9.
  • [47] Ferreira FM, Simamoto-Junior PC, Soares CJ, Ramos A, Fernandes-Neto AJ. Effect of occlusal splints on the stress distribution on the temporomandibular joint disc. Braz Dent J 2017;28(3):324-9.
  • [48] Sagl B, Schmid-Schwap M, Piehslinger E, Rausch-Fan X, Stavness I. The effect of tooth cusp morphology and grinding direction on TMJ loading during bruxism. Front Physiol 2022;13:964930.
  • [49] Colonna A, Manfredini D, Lombardo L, Muscatello L, Marchese-Ragona R, Arveda N, et al. Comparative analysis of jaw morphology and temporomandibular disorders: A three-dimension imaging study. J Craniomandibular Sleep Pract 2020; 38(3):158-67.
  • [50] Wohlberg V, Schwahn C, Gesch D, Meyer G, Kocher T, Bernhardt O. The association between anterior crossbite, deep bite and temporomandibular joint morphology validated by magnetic resonance imaging in an adult non-patient group. Ann Anatomy-Anatomischer Anzeiger 2012;194(4):339-44.
  • [51] Hattori Y, Satoh C, Seki S, Watanabe Y, Ogino Y, Watanabe M. Occlusal and TMJ loads in subjects with experimentally shortened dental arches. J Dent Res 2003;82 (7):532-6.
  • [52] Tokiwa O, Park BK, Takezawa Y, Takahashi Y, Sasaguri K, Sato S. Relationship of tooth grinding pattern during sleep bruxism and dental status. J Craniomandibular Sleep Pract 2008;26(4):289-95.
  • [53] Guo J, Chen J, Wang J, Ren G, Tian Q, Guo C. EMG-assisted forward dynamics simulation of subject-specific mandible musculoskeletal system. J Biomech 2022; 139:111143.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a582818f-7ba7-405f-8f1f-02cef9eb40c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.