PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and characterization of alkali‑activated materials containing biomass fly ash and metakaolin: efect of the soluble salt content of the residue

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study investigates the production and characterization of alkali-activated bricks prepared with mixing metakaolin (MK) and biomass fly ash from the combustion of a mix of pine pruning, forest residues and energy crops (BFA). To use this low cost and high availability waste, diferent specimens were prepared by mixing MK with diferent proportions of BFA (25, 50 and 75 wt%). Specimens containing only metakaolin and biomass fly ash were produced for the purpose of comparison. Efects of the alkali content of biomass fly ash, after a washing pretreatment (WBFA), as well as the concentration of NaOH solution on the physical, mechanical and microstructural properties of the alkali-activated bricks were studied. It was observed that up to 50 wt% addition of the residue increases compressive strength of alkali-activated bricks. Alkalinity and soluble salts in fly ash have a positive efect, leading materials with the improved mechanical properties. Concentration of NaOH 8 M or higher is required to obtain optimum mechanical properties. The compressive strength increases from 23.0 MPa for the control bricks to 44.0 and 37.2 MPa with the addition of 50 wt% BFA and WBFA, respectively, indicating an increase of more than 60%. Therefore, the use of biomass fy ash provides additional alkali (K) sources that could improve the dissolution of MK resulting in high polycondensation. However, to obtain optimum mechanical properties, the amount of BFA cannot be above 50 wt%.
Rocznik
Strony
art. no. e121
Opis fizyczny
Bibliogr. 69 poz., rys., tab., wykr.
Twórcy
  • Department of Chemical, Environmental and Materials Engineering, Higher Polytechnic School of Jaén, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
  • Department of Chemical, Environmental and Materials Engineering, Higher Polytechnic School of Jaén, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
  • Institute of Materials Science of Sevilla (ICMS), Joint Center of the Spanish National Research Council (CSIC), University of Sevilla, 41092 Seville, Spain
autor
  • Civil Engineering Department, Bartin. University, Bartin, Turkey
  • Department of Chemical, Environmental and Materials Engineering, Higher Polytechnic School of Jaén, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
  • Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
Bibliografia
  • 1.Hashmi AF, Shariq M, Baqi A. Flexural performance of high volume fy ash reinforced concrete beams and slabs. Structures. 2020;25:868-80. https://doi.org/10.1016/j.istruc.2020.03.071.
  • 2. Hashmi AF, Shariq M, Baqi A. An investigation into age-dependent strength, elastic modulus and defection of low calcium fly ash concrete for sustainable construction. Constr Build Mater. 2021;283: 122772. https://doi.org/10.1016/j.conbuildmat.2021.122772.
  • 3. Rashad AM. Alkali-activated metakaolin: a short guide for civil engineer-an overview. Constr Build Mater. 2013;41:751-65. https://doi.org/10.1016/j.conbuildmat.2012.12.030.
  • 4. Sarker PK, Kelly S, Yao Z. Efect of fre exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater Des. 2014;3:584-92. https://doi.org/10.1016/j.matdes.2014.06.059.
  • 5. Hassan A, Arif M, Shariq M. Use of geopolymer concrete for a cleaner and sustainable environment-a review of mechanical properties and microstructure. J Clean Prod. 2019;223:704-28. https://doi.org/10.1016/j.jclepro.2019.03.051.
  • 6. Zhang Z, Wang H, Zhu Y, Reid A, Provis JL, Bullen F. Using fly ash to partially substitute metakaolin in geopolymer synthesis. Appl Clay Sci. 2014;88-89:194-201. https://doi.org/10.1016/j. Clay.2013.12.025.
  • 7. Villaquirán-Caicedo MA, Mejía de Gutiérrez R, Sulekar S, Davis C, Nino JC. Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources. Appl Clay Sci. 2015;118:276-82. https://doi.org/10.1016/j.clay.2015.10.005.
  • 8. Guo X, Xiong G. Resistance of fiber-reinforced fly ash-steel slag based geopolymer mortar to sulfate attack and drying-wetting cycles. Constr Build Mater. 2021;269:121326. https://doi.org/10. 1016/j.conbuildmat.2020.121326.
  • 9. Apithanyasai S, Supakata N, Papong S. The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production. Heliyon. 2020;6: e03697. https://doi.org/10.1016/j.heliyon.2020.e03697.
  • 10. Atabey I, Karahan O, Bilim C, Atiş CD. The infuence of activator type and quantity on the transport properties of class F fly ash geopolymer. Constr Build Mater. 2020;264: 120268. https://doi.org/10.1016/j.conbuildmat.2020.120268.
  • 11. Freire AL, Moura-Nickel CD, Scaratti G, De Rossi A, Araújo MH, De Noni JA, Rodrigues AE, Rodríguez-Castellón E, Moreira R. Geopolymers produced with fly ash and rice husk ash applied to CO2 capture. J Clean Prod. 2020;273: 122917. https://doi.org/10.1016/j.jclepro.2020.122917.
  • 12. La bioenergía en Andalucía. In: Agencia Andaluza de la Energía. Consejería de Hacienda, Industria y Energía. 2020. https://www. agenciaandaluzadelaenergia.es/sites/default/fles/Documentos/3_ 2_0068_20_LA_BIOENERGIA_EN_ANDALUCIA.PDF. Accessed 3 Jan 2020.
  • 13. Nogales R, Delgado G, Quirantes M, Romero M, Romero E, Molina-Alcaide E. Characterization of olive waste ashes as fertilizers. In: Insam H, Knapp BA, editors. Recycling of biomass ashes. Heidelberg: Springer; 2011. p. 57-68.
  • 14. Cuenca J, Rodríguez J, Martín-Morales M, Sánchez-Roldán Z, Zamorano M. Efects of olive residue biomass fly ash as filler in self-compacting concrete. Constr Build Mater. 2013;40:702-9. https://doi.org/10.1016/j.conbuildmat.2012.09.101.
  • 15. Cruz-Yusta M, Mármol I, Morales J, Sánchez L. Use of olive biomass fly ash in the preparation of environmentally friendly mortars. Environ Sci Technol. 2011;45:6991-6.
  • 16. Fernández-Pereira C, de la Casa JA, Gómez-Barea A, Arroyo F, Leiva C, Luna Y. Application of biomass gasifcation fly ash for brick manufacturing. Fuel. 2011;90:220-32. https://doi.org/10.1016/j.fuel.2010.07.057.
  • 17. Eliche-Quesada D, Felipe-Sesé MA, Moreno-Molina AJ, Franco F, Infantes-Molina A. Investigation of using bottom or fly pineolive pruning ash to produce environmental friendly ceramic materials. Appl Clay Sci. 2017;135:333-46. https://doi.org/10.1016/j.clay.2016.10.015.
  • 18. Hinojosa MJR, Galvín AP, Agrela F, Perianes M, Barbudo A. Potential use of biomass bottom ash as alternative construction material: confictive chemical parameters according to technical regulations. Fuel. 2014;128:248-59. https://doi.org/10.1016/j.fuel.2014.03.017.
  • 19 Munawar MA, Khoja AH, Naqvi SR, Mehran MT, Hassan M, Liaquat DUF. Challenges and opportunities in biomass ash management and its utilization in novel application. Renew Sustain Energy Rev. 2021;150:111451. https://doi.org/10.1016/j.rser.2021.111451.
  • 20 Knapp BA, Insam H. Recycling of biomass ashes: current technologies and future research needs. In: Insam H, Knapp B, editors. Recycling of biomass ashes. Heidelberg: Springer, Berlin; 2011.
  • 21. Laxman Yadav A, Sairam V, Srinivasan K, Muruganandam L. Synthesis and characterization of geopolymer from metakaolin and sugarcane bagasse ash. Constr Build Mater. 2020;258: 119231. https://doi.org/10.1016/j.conbuildmat.2020.119231.
  • 22. Nana A, Epey N, Kaze C, Deutou JG, Djobo JN, Sylvain T, Alomayri TS, Ngounéa J, Kamseub E, Leonellif C. Mechanical strength and microstructure of metakaolin/volcanic ash-based geopolymer composites reinforced with reactive silica from rice husk ash (RHA). Materialia. 2021;16: 101083. https://doi.org/10.1016/j.mtla.2021.101083.
  • 23. De Rossi A, Simão L, Ribeiro MJ, Hotza D, Moreira RFPM. Study of cure conditions efect on the properties of wood biomass fly ash geopolymers. J Mater Res Technol. 2020;9(4):7518-28. https://doi.org/10.1016/j.jmrt.2020.05.047.
  • 24. Perná I, Šupová M, Hanzlíček T, Špaldoňová A. The synthesis and characterization of geopolymers based on metakaolin and high LOI straw ash. Constr Build Mater. 2019;228: 116765. https://doi.org/10.1016/j.conbuildmat.2019.116765.
  • 25. Yurt Ü, Bekar F. Comparative study of hazelnut-shell biomass ash and metakaolin to improve the performance of alkali-activated concrete: a sustainable greener alternative. Constr Build Mater. 2022;320: 126230. https://doi.org/10.1016/j.conbuildmat.2021.126230.
  • 26. Rajamma R, Labrincha JA, Ferreira VM. Alkali activation of biomass fly ash-metakaolin blends. Fuel. 2012;98:265-71. https://doi.org/10.1016/j.fuel.2012.04.006.
  • 27. De Aza AH, Turrillas X, Rodríguez MA, Durana T, Peña P. Time-resolved powder neutron difraction study of the phase transformation sequence of kaolinite to mullite. J Eur Ceram Soc. 2014;34:1409-21. https://doi.org/10.1016/j.jeurceramsoc.2013.10.034.
  • 28 Fernández-Jiménez A, Monzo M, Vicent M, Barba A, Palomo A. Alkaline activation of metakaolin-fly ash mixtures: obtain of zeoceramics and zeocements. Micropor Mesopor Mater. 2008;108:41-9. https://doi.org/10.1016/j.micromeso.2007.03.024.
  • 29. Granizon N, Palomo A, Fernandez-Jiménez A. Efect of temperature and alkaline concentration on metakaolin leaching kinetics. Ceram Int. 2014;40:8975-85. https://doi.org/10.1016/j.ceramint. 2014.02.071.
  • 30. Kouamo HT, Mbey JA, Elimbi A, Difo BB, Njopwouo D. Synthesis of volcanic ash-based geopolymer mortars by fusion method: efects of adding metakaolin to fused volcanic ash. Ceram Int. 2013;39:1613-21. https://doi.org/10.1016/j.ceramint.2012.08.003.
  • 31. Van Jaarsveld JGS, Van Deventer JSJ, Lukey GC. The characterisation of source materials in fly ash-based geopolymers. Mater Lett. 2003;57(7):1272-80. https://doi.org/10.1016/S0167-577X(02)00971-0.
  • 32. Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical composition of biomass. Fuel. 2019;89:913-33. https://doi.org/10.1016/j.fuel.2009.10.022.
  • 33. Singhal A, Gangwar BP, Gayathry JM. CTAB modifed large surface area nanoporous geopolymer with high adsorption capacity for copper ion removal. Appl Clay Sci. 2017;150:106-14. https:// doi.org/10.1016/j.clay.2017.09.013.
  • 34. Tchakouté HK, Melele SJK, Djamen AT, Kaze CR, Kamseu E, Nanseu CNP, Leonelli C, Ruscher CH. Microstructural and mechanical properties of poly(sialatesiloxo) networks obtained using metakaolins from kaolin and halloysite as aluminosilicate sources: a comparative study. Appl Clay Sci. 2020;186:105448-59. https://doi.org/10.1016/j.clay.2020.105448.
  • 35 Ramachandran VS, Paroli RM, Beaudoin J, Delgado AH. Handbook of thermal analysis of construction materials. Thermochim Acta. 2003;406:209. https://doi.org/10.1016/S0040-6031(03) 00230-2.
  • 36. Rozek P, Krol M, Mozgawa W. Spectroscopic studies of fly ash-based geopolymers. Spectrochim Acta A Mol Biomol Spectrosc. 2018;198:283-9. https://doi.org/10.1016/j.saa.2018.03.034.
  • 37. Ozer I, Soyer-Uzun S. Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with diferent molar Si/Al ratios. Ceram Int. 2015;41:10192-8. https://doi.org/10.1016/j.ceramint.2015.04.125.
  • 38. Kouamo HT, Elimbi A, Mbey JA, Ngally-Sabouang CJ, Njopwouo D. The efect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: a comparative study. Constr Build Mater. 2012;35:960-9. https://doi.org/10.1016/j.conbuildmat. 2012.04.023.
  • 39. UNE-EN ISO 17294-1:2007 (2007) Water quality-application of inductively coupled plasma mass spectrometry (ICP-MS)-part 1: general guidelines (ISO 17294-1:2004).
  • 40. UNE-EN ISO 17294-2:2017 (2017) Water quality-application of inductively coupled plasma mass spectrometry (ICP-MS)-part 2: determination of selected elements including uranium isotopes (ISO 17294-2:2016).
  • 41. UNE-EN 1015-10:2000/A1:2007 (2007) Methods of test for mortar for masonry-part 10: determination of dry bulk density of hardened mortar.
  • 42. ASTM C642-13 (2016) Standard test method for density, absorption, and voids in hardened concrete. ASTM International.
  • 43. UNE-EN 772-1:2011 (2011) Methods of test for masonry units-part 1: determination of compressive strength.
  • 44. Yip CK, Lukey GC, van Deventer JSJ. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem Concr Res. 2005;35(9):1688-97. https://doi.org/10.1016/j.cemconres.2004.10.042.
  • 45. Zhao X, Liu C, Zuo L, Wang L, Zhu Q, Wang M. Investigation into the efect of calcium on the existence form of geopolymerized gel product of fly ash based geopolymers. Cem Concr Compos. 2019;103:279-92. https://doi.org/10.1016/j.cemconcomp.2018.11.019.
  • 46. Yang M, Paudel SR, Asa E. Comparison of pore structure in alkali-activated fly ash geopolymer and ordinary concrete due to alkali-silica reaction using microcomputed tomography. Constr Build Mater. 2020;236: 117524. https://doi.org/10.1016/j.conbu ildmat.2019.117524.
  • 47. DeutouNemaleu JG, Kaze RC, Tome S, Alomayri T, Assaedi H, Kamseu E, Melo UC, Sglavo VM. Powdered banana peel in calcined halloysite replacement on the setting times and engineering properties on the geopolymer binders. Constr Build Mater. 2021;279: 122480. https://doi.org/10.1016/j.conbuildmat.2021.122480.
  • 48. Xie N, Bell JL, Kriven WM. Fabrication of structural leucite glass-ceramics from potassium-based geopolymer precursors. J Am Ceram Soc. 2010;93(9):2644-9. https://doi.org/10.1111/j.1551-2916.2010.03794.x.
  • 49. Fernández-Jiménez A, Cristelo N, Miranda T, Palomo Á. Sustainable alkali-activated materials: precursor and activator derived from industrial wastes. J Clean Prod. 2017;162:1200-9. https://doi.org/10.1016/j.jclepro.2017.06.151.
  • 50. Timakul P, Rattanaprasit W, Aungkavattana P. Improving compressive strength of fly ash-based geopolymer composites by basalt fbers addition. Ceram Int. 2016;42(5):6288-95. https://doi.org/10.1016/j.ceramint.2016.01.014.
  • 51. Ozer I, Soyer-Uzun S. Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with diferent molar Si/Al ratios. Ceram Int. 2015;41(8):10192-8. https://doi.org/10.1016/j.ceramint.2015.04.125.
  • 52. Zhang M, Guo H, El-Korchi T, Zhang G, Tao M. Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Constr Build Mater. 2013;47:1468-78. https://doi.org/10.1016/j.conbuildmat.2013.06.017.
  • 53. Tchakoute HK, Elimbi A, Yanne E, Djangang CN. Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature. Cem Concr Compos. 2013;38:75-81. https://doi.org/10.1016/j.cemconcomp.2013.03.010.
  • 54 Robayo-Salazar RA, Mejía de Gutiérrez R. Natural volcanic pozzolans as an available raw material for alkali-activated materials in the foreseeable future: a review. Constr Build Mater. 2018;189:109-18. https://doi.org/10.1016/j.conbuildmat.2018.08.174.
  • 55. Robayo-Salazar RA, Aguirre-Guerrero AM, MejíadeGutiérrez R. Carbonation-induced corrosion of alkali-activated binary concrete based on natural volcanic pozzolan. Constr Build Mater. 2020;232:117189-11799. https://doi.org/10.1016/j.conbuildmat.2019.117189.
  • 56. Nana A, Alomayri TS, Venyite P, Kaze RC, Assaedi HS, Nobouassia CB, Sontia JVM, Ngouné J, Kamseu E, Leonelli C. Mechanical properties and microstructure of a metakaolin-based inorganic polymer mortar reinforced with quartz sand. Silicon. 2020;14(1):263-74. https://doi.org/10.1007/s12633-020-00816-4.
  • 57. Bayiha BN, Billong N, Yamb E, Kaze RC, Nzengwa R. Efect of limestone dosages on some properties of geopolymer from thermally activated halloysite. Constr Build Mater. 2019;217:28-35. https://doi.org/10.1016/j.conbuildmat.2019.05.058.
  • 58. Rees CA, Provis JL, Lukey GC, van Deventer JSJ. Attenuated total refectance Fourier transform infrared analysis of fly ash geopolymer gel ageing. Langmuir. 2007;23(15):8170-9. https://doi.org/10.1021/la700713g.
  • 59. Kamseu E, Kaze CR, Fekoua JNN, Melo UC, Rossignol S, Leonelli C. Ferrisilicates formation during the geopolymerization of natural Fe-rich aluminosilicate precursors. Mater Chem Phys. 2020;240: 122062. https://doi.org/10.1016/j.matchemphys.2019.122062.
  • 60. Kaze CR, Yankwa JN, Nana A, Tchakoute HK, Kamseu E, Melo UC, Rahier H. Efect of silicate modulus on the setting, mechanical strength and microstructure of iron-rich aluminosilicate (laterite) based-geopolymer cured at room temperature. Ceram Int. 2018;44(17):21442-50. https://doi.org/10.1016/j.ceramint.2018.08.205.
  • 61. Xu H, Gong W, Syltebo L, Izzo K, Lutze W, Pegg IL. Efect of blast furnace slag grades on fly ash based geopolymer waste forms. Fuel. 2014;133:332-40. https://doi.org/10.1016/j.fuel.2014.05.018.
  • 62. Kamseu E, Leonelli C, Perera DS, Melo UC, Lemougna PN. Investigation of volcanic ash based geopolymers as potential building materials. Int Ceram Rev. 2009;58(2-3):136-40.
  • 63. Nana A, Ngouné J, Kaze RC, Boubakar L, Tchounang SK, Tchakouté HK, Kamseu E, Leonelli C. Room-temperature alkaline activation of feldspathic solid solutions: development of high strength geopolymers. Constr Build Mater. 2019;195:258-68. https://doi.org/10.1016/j.conbuildmat.2018.11.068.
  • 64. Moudio AMN, Tchakoute HK, Ngnintedem DLV, Andreola F, Kamseu E, Nanseu-Njiki CP, Leonelli C, Rüscher CH. Infuence of the synthetic calcium aluminate hydrate and the mixture of calcium aluminate and silicate hydrates on the compressive strengths and the microstructure of metakaolin-based geopolymer cements Mater. Chem Phys. 2021;264: 124459. https://doi.org/10.1016/j.matchemphys.2021.124459.
  • 65. Huo Z, Xu X, Lü Z, Song J, He M, Li Z, Wang Q, Yan L. Synthesis of zeolite NaP with controllable morphologies. Micropor Mesopor Mater. 2012;158:137-40. https://doi.org/10.1016/J.MICROMESO.2012.03.026.
  • 66. Tchakouté HK, Rüscher CH, Kong S, Kamseu E, Leonelli C. Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: a comparative study. Constr Build Mater. 2016;114:276-89. https://doi.org/10.1016/j.conbuildmat.2016.03.184.
  • 67. Wan Q, Rao F, Song S, García RE, Estrella RM, Patiño CL, Zhang Y. Geopolymerization reaction, microstructure and simulation of metakaolin based geopolymers at extended Si/Al ratios. Cem Concr Compos. 2017;79:45-52. https://doi.org/10.1016/j.cemconcomp.2017.01.014.
  • 68. Wan-En O, Yun-Ming L, Cheng-Yong H, Abdullah MM, Li L, Ho LN, Loong FK, Shee-Ween O, Hui-Teng N, Yong-Sing N, Jaya NA. Comparative mechanical and microstructural properties of high calcium fly ash one-part geopolymers activated with Na2SiO3-anhydrous and NaAlO2. J Mater Res Technol. 2021;15:3850-66. https://doi.org/10.1016/j.jmrt.2021.10.018.
  • 69. Ismail I, Bernal SA, Provis JL, San Nicolas R, Hamdan S, van Deventer JSJ. Modifcation of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement Concr Compos. 2014;45:125-35. https://doi.org/10.1016/j.cemconcomp.2013.09.006.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a57e3724-dc2e-4d2b-bdab-37993c56ea5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.