PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the transverse inhomogeneity on the nonlinear post-buckling path of compressed FG cylindrical panels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, nonlinear stability of axially compressed cylindrical panels simply supported according to two types of boundary conditions (with possible or limited circumferential displacements of unloaded sides) is presented. Panels made of functionally graded materials (FGMs) of two constituents (metallic and ceramic phases) are treated as multi-layered composite structures with transverse inhomogeneity. Volume fractions of ceramics and metal distribution throughout the layer thickness are described by a simple power law. The influence of the transverse inhomogeneity of FGM panels on unsymmetrical stable post-buckling paths is shown. Special attention is paid to effect of the imperfection sign on post-buckling paths of investigated FGM panels. Some validations of the finite element analysis are discussed for isotropic panels compressed according to two (force and kinematic) loading schemes.
Rocznik
Strony
563--577
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Department of Structural Mechanics and Strength of Materials Prydniprovska State Academy of Civil Engineering and Architecture Dnipro, Ukraine
  • Department of Strength of Materials Lodz University of Technology Lodz, Poland
Bibliografia
  • 1. Birman V., Byrd L.W., Modeling and analysis of functionally graded materials and structures, Appl. Mech. Rev., 60(5): 195–216, 2007.
  • 2. Liew K.M., Zhao X., Ferreira A.J.M., A review of meshless methods for laminated and functionally graded plates and shells, Composite Structures, 93(8): 2031–2041, 2011.
  • 3. Jha D.K., Kant T., Singh R.K., A critical review of recent research on functionally graded plates, Composite Structures, 96: 833–849, 2013.
  • 4. Swaminathan K., Naveenkumar D.T., Zenkour A.M., Carrera E., Stress, vibration and buckling analyses of FGM plates – A state-of-the-art review, Composite Structures, 120: 10–31, 2015.
  • 5. Birman V., Stability of functionally graded hybrid composite plates, Compos. Eng., 7(195): 913–921, 1997.
  • 6. Ma L.S., Wang T.J., Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory, Int. J. Solids Struct., 41(1): 85–101, 2004.
  • 7. Mohammadi M., Saidi A., Jomehzadeh E., Levy solution for buckling analysis of functionally graded rectangular plates, Appl. Composite Materials, 17(2): 81–93, 2010.
  • 8. Naderi A., Saidi A.R., On pre-buckling configuration of functionally graded Mindlin rectangular plates, Mech. Res. Commun., 37(6): 535–538, 2010.
  • 9. Bateni M., Kiani Y., Eslami M.R., A comprehensive study on stability of FGM plates, Int. J. Mech. Sci., 75: 134–144, 2013.
  • 10. Naei M.H., Masoumi A., Shamekhi A., Buckling analysis of circular functionally graded material plate having variable thickness under uniform compression by finite-element method, J. Mech. Eng. Sci., 221(11): 1241–1247, 2017.
  • 11. Lee C.Y., Kim J.H., Hygrothermal postbuckling behavior of functionally graded plates, Composite Structures, 95: 278–282, 2013.
  • 12. Yang J., Shen H., Non-linear analysis of functionally graded plates under transverse and in-plane loads, Int. J. Non. Linear Mech., 38(4): 467–482, 2003.
  • 13. Yang J., Liew K.M., Kitipornchai S., Imperfection sensitivity of the post-buckling behavior of higher-order shear deformable functionally graded plates, Int. J. Solids Struct., 43(17): 5247–5266, 2006.
  • 14. Hui-Shen S., Functionally graded materials – Nonlinear analysis of plates and shells, CRC Press, Taylor & Francis, London, 2009.
  • 15. Kolakowski Z., Mania R.J., Grudziecki J., Local unsymmetric postbuckling equilibrium path in thin FGM plate, Eksploatacja i Niezawodność – Maintenance and Reliability, 17(1): 135–142, 2015.
  • 16. Jones R.M., Mechanics of composite materials, 2nd ed., Taylor & Francis, London, 1999.
  • 17. Krolak M., Mania R.J. [Eds.], Stability of Thin-Walled Plate Structures, Monographs of TUL, pp. 131–153, 2011. 18. Lykhachova O., Kołakowski Z., Influence of the coupling submatrix B on the nonlinear stability of FG cylindrical panels subjected to compression, TKI-2016, Warsaw, 2016.
  • 19. Liew K.M., Lei Z.X., Yu J.L., Zhang L.W., Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach, Comput. Methods Appl. Mech. Engrg., 268: 1–17, 2014.
  • 20. Kolakowski Z., Kowal-Michalska K. [Eds.], Selected problems of instabilities in composite structures, A Series of Monographs, TUL, Lodz 1995.
  • 21. Reddy J.N., Analysis of functionally graded plates, Int. J. Numer. Meth. Eng., 47: 663– 684, 2000.
  • 22. Thornburgh R.P., Hilburger M.W., Identifying and characterizing discrepancies between test and analysis results of compression-loaded panels, NASA/TM-2005-213932, 2005.
  • 23. Lykhachova O.V., Numerical simulation of axially compressed cylindrical shells with circular cutouts, Journal of Mechanics and Mechanical Engineering, 20(3): 311–320, 2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a57dc575-4da3-42b2-bd2a-0e253bf4a8df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.