
 161

decision support, constraint logic programming, production planning, modeling, scheduling 
 
 
Zbigniew BANASZAK*, Jerzy JÓZEFCZYK**  
 
 

TOWARDS DEDICATED DECISION SUPPORT TOOLS: 
CLP-BASED APPROACH 

 
 
Abstract 

Constraint programming (CP) is an emergent software technology for 
declarative description and effective solving of large combinatorial problems 
especially in areas of integrated production planning. In that context, the CP can 
be considered as a well-suited framework for development of decision making 
software supporting small and medium size enterprises in the course of 
Production Process Planning (PPP). The problem considered regards of finding 
of computationally effective approach aimed at scheduling of a new project 
subject to constraints imposed by a multi–project environment. In other words, 
we are looking for an answer whether a given production order specified by its 
cost and completion time can be accepted in a given manufacturing system 
specified by available production capability, i.e., the time-constrained resources 
availability. The problem belongs to a class of multi-mode case project 
scheduling problems, where the problem of finding a feasible solution is NP-
complete. The aim of the paper is to present the CP modeling framework as well 
as to illustrate its application to decision making in the case of a new production 
order evaluation. So, the contribution emphasizes benefits derived from CP-
based DSS and focuses on constraint satisfaction driven decision-making rather 
than on an optimal solution searching. 

 
 
1. INTRODUCTION 
 

Today’s manufacturing environment can be characterized in terms of many factors - the 
maturity of manufacturing procedures, technologies and standards; the efficiency of logistic 
chains and global telecommunication infrastructure; the penetration of artificial intelligence 
methods in the area of control and decision support; and practically unlimited computing 
resources. But the key factor for companies confronting the challenge of remaining competitive 
in an era of globalization is undoubtedly the capability to fast and accurate decision making, 
especially in project management domain. 
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Currently, the field of project-oriented management of manufacturing systems is driven 
primarily by market forces. Some of the most challenging issues that arise in the domain of 
distributed manufacturing technology and management include manufacturability analysis, 
validation and evaluation of process plans, partnership in virtual enterprises, process design, 
and optimization of production plans and schedules. These issues are easily unified within 
a framework of a project-driven manufacturing concept which is focusing on the Small and 
Medium size Enterprises (SMEs) where products are manufactured based on a make-to-order 
or a build-to-order principle. 

Most companies, particularly SME have to manage various projects, which share a pool of 
constrained resources, taking into account various objectives at the same time. Due to the 
surveys conducted about 80% of companies have to deal with multiple projects, what 
corresponds to the other data stating that about 90% of all projects occur in the multiproject 
context. Since the project management problems belong to a class of NP-complete ones, thus 
the new methods and techniques aimed at real-life constraints imposing on-line decision 
making are of great importance. Such methods enhancing an on-line project management, and 
supporting a manager in the course of decision making, e.g. in the course of evaluation whether 
a new project can be accepted to be processed in a multi-project environment of 
a manufacturing system at hand or not, could be included into Decision Support Systems 
(DSSs) tools integrated into standard project management software like MS Project or CA-
Super Project [1]. 

Regardless of its character and scope of business activities a modern enterprise, has to build 
a project-driven development strategy in order to respond to challenges imposed by growing 
complexity and globalization. Managers need to be able to utilize a modern DSS as to 
undertake optimal business decisions in further strategic perspective of enterprise operation. In 
this context this contribution covers various issues of decision making while providing the 
concept of Constraint Programming (CP) as well as modeling and designing of decision 
support tools aimed at management in SMEs and/or the associated Extended Enterprise.   

The main objective of DSS aimed at the production flow planning is the coordination of 
processes and activities related to work order processing, i.e., regarding the transportation, 
inventory management, warehousing and production. In other words the goal is to achieve 
a well-synchronized behavior of dynamically interacting components, where the right quantity 
of the right material is provided in the right place, and at the right time [1]. The decision 
making regards of the question: Whether a given production order specified by its cost and 
completion time can be accepted for processing in a SME specified by available production 
capability, i.e., the time-constrained resources availability (see Fig.1).The problem considered 
regards of finding of computationally effective approach aimed at scheduling of a new project 
subject to constraints imposed by a multi–project environment.  

That is worth to note that the currently available software tools allow pre-emption; 
however, they are not designed to cope with company production capability constraints in 
terms of resource and time availability. Moreover, they do not permit to consider production 
planning in a unified way to enable an integrated approach to such different tasks as production 
and transportation routings, production and transportation batch sizing as well as tasks 
scheduling. 

In that context, Constraint Programming/Constraint Logic Programming (CP/CLP) 
languages [6], [7], employing the constraints propagation concept and by providing unified 
constraints specification, seem to be well suited for modeling of a company real-life and day-
to-day decision-making [4], [5], [9], [10] process.  
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The rest of the paper is organized as follows: Section 2 describes the modeling framework 
enabling to state the problem. A concept of the decomposition reference model of constraint 
satisfaction problem that stands behind searching for a feasible production flow prototyping is 
then presented in Section 3. The issues of the state space pruning strategies development based 
on the concept of a reference model of constraint satisfaction problem decomposition are 
discussed in Section 4. In Section 5, a concept of the CP/CLP-based approach to DSS 
designing aimed at a SME is investigated. Conclusions are presented in Section 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1. Decision making problem: Do the consumer’s requirements can be balanced with 

producer’s capability? 
 
 
2. CP-BASED PROBLEM SPECIFICATION 
 

Constraint programming (CP) is an emergent software technology for declarative 
description and effective solving of large combinatorial problems especially in areas of 
integrated production planning. Since a constraint can be treated as a logical relation among 
several variables, each one taking a value in a given (usually discrete) domain, hence the idea 
of CP is to solve problems by stating requirements (constraints) specifying a problem at hand, 
and then finding a solution satisfying all the constraints [6]. 

CP is a framework for solving combinatorial problems specified by pairs: <a set of 
variables and associated to them domains, a set of constraints restricting the possible 
combinations of the variables’ values>. Constraints propagation, i.e., reference engine, is 
based on the idea of using constraints actively to prune the search space. The scope of 

Decision Support  System

Constraints negotiation that must be 
satisfied in order to balance an 
enterprise capability with a production 
order requirements 

Production flow specification: 
manufacturing and transportation 
routes, batch sizes, schedules,  etc. 
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Do the consumer’s requirements can be balanced with producer’s capability? 
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propagation techniques, i.e. local consistency checking, is to reach a certain level of 
consistency in order to accelerate search procedures by drastically reducing the size of a search 
tree [7], [15].   

A constraint satisfaction problem CSP = ((X,D),C), can be stated as follows. Consider 
a finite set of n variables X = {x1,x2,...,xn}, their finite and discrete domains D = 
{D1,D2,...,Dn}, where Di = {di1,di2,…,dir}, and a finite set of constraints C = {c1,c2,...,cm}. 
Each constraint treated as a predicate can be seen as an n-ary relation defined on the Cartesian 
product D1 x D2 x…x Dn .  

The solution to the CSP is a vector (d1i,d2k,…,dnj) such that the entries assignments satisfy 
all the constraints C.  So, the task is to find values of variables satisfying all the constraints, 
i.e., a feasible valuation. In general case, however, the constraints can express any arbitrary 
analytical and/or logical formulae as well as bind variables with different non-numerical event 
domains.  

An inference engine employed consists of the following two stages: constraints propagation 
and variables distribution, respectively. In order to illustrate its mechanism let us consider the 
CSP = ((X,D),C), where X = {x1, x2, x3} is the set of variables and D = {Dx1,Dx2,Dx3} is the set 
of their domains: Dx1 = {1,2,3,4,5,6}, Dx2 = {1,2,3,4,5,6}, Dx3 = {1,2,3,4,5,6}. Suppose the 
following set of constraints C = {α,β, γ}, where α: x1 ≥ x2 + 1,   β: x2 ≥ x3 + 2,   γ: x3  < x1 – x2. 

Due to the first stage one of possible ways of constraints propagation is shown below: 
Dx1 = {1,2,3,4,5,6}        Dx1 = {2,3,4,5,6} 
Dx2 = {1,2,3,4,5,6}        Dx2 = {1,2,3,4,5} 
Dx3 = {1,2,3,4,5,6}       α         Dx3 = {1,2,3,4,5,6} 
 
Dx1 = {2,3,4,5,6}                      Dx1 = {4,5,6} 
Dx2 = {1,2,3,4,5}                  Dx2 = {3,4,5} 
Dx3 = {1,2,3,4,5,6}       β             Dx3= {1,2,3} 
 
Dx1 = {4,5,6}            Dx1 = {5,6} 
Dx2 = {3,4,5}                 Dx2 = {3,4} 
Dx3 = {1,2,3}                γ             Dx3  = {1,2}. 

   
Note, the initial space containing of 6 x 6 x 6 = 216 potential solutions is reduced to its 

subspace size of 2 x 2 x 2 = 8.  
In order to select a subset of feasible solutions the another stage regarding the variables 

distribution has to be performed, e.g., for each element of the domain Dx1 = {5,6} the phase of 
constraints propagation is once more applied.  So, the resultant set of feasible solutions consists 
of the following combinations of variables value assignment: 
x1, x2, x3        x1, x2, x3         x1, x2, x3           
(5 , 3 , 1),      (6, 3, 1),         (6, 4, 1).       

The illustration of searching tree provided by OZ Explorer is shown in Fig.2. Of course, 
the stage of variables distribution my start with other domains as well, e.g., from x2 or x3. In 
case such distributions do not result in unique variables’ domains, the stage of variables 
distribution (for example for x2) has to be performed again. The situation when constraints 
propagation and/or variables distribution result in an empty set of feasible solutions 
corresponds to discrepancy of the CSP considered.  

In that context, the CP can be considered as a well-suited framework for development of 
decision making software aimed at support of the SMEs in the course of the Production 
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Process Planning (PPP). Because of its declarative nature, for a use that is enough to state what 
has to be solved instead how to solve it [4]. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig.2. Searching tree and the set of feasible solutions 
 

The aim of the contribution is to present the CP modeling framework as well as to illustrate 
its application to decision making in the case of a new production order evaluation, i.e. PPP. 
Finding an answer to the question whether a given work order can be accepted to be processed 
in a production system seems to be a fundamental from the customer-driven, and highly 
competitive market point of view. In that context decision making regards to the question 
whether enterprise’s capability allows to fulfill constraints imposed by the production order 
requirements, i.e. whether its completion time, batch size, and its delivery period satisfy the 
customer requirements while satisfying constraints imposed by the enterprise configuration 
taking into account available resources, know how, experience, and so on. In the case of the 
response to this question being positive, i.e. there exist a way guaranteeing to complete 
a production order, the next question regards of finding of the most efficient one (e.g. as to be 
competitive on the market) [15]. 

 
 

3. MODELLING FRAMEWORK 
 
Consider CSP = ((X,D),C), such that X = {A,B}, D = {DA,DB}, where DA = {1,2,3}, DB = 

{3,4,...,9}, and  C = {c1,c2}, where c1 = P[ AB ⋅≥ 3  ], and c2 = P[ 9>+ BA  ]. Depends on 
the order in which variables are distributed the time required to obtain a set of feasible solutions may 
differ dramatically.  In the case considered, starting with variable A requires twice less searching 
than in the case when variables distribution begin from variable B, see Fig.3. 

It’s easy to notice, that efficiency of a searching strategy can be evaluated in advance on the 
base of domains’ sizes. In order to discuss this possibility let us introduce a concept of 
a reference model of the CSP decomposition. Consider  the CSP = ((X,D),C), where X = 
{x1,x2,...,x12}, D = {D1,D2,...,D12}, C = {c1,c2,...,c8}, and  where:  
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c1 = P[x1,x2,x3],   c2 = P[x2,x4,x5],    c3 = P[x4,x6],   c4 = P[x7,x8],    c5 = P[x4,x7],   
c6 = P[x9,x10],      c7 = P[x8,x9],         c8 = P[x11,x12]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.3. Decision variables distribution, a) B follows A, b) A follows B 

  
The problem in natural way decomposes into subproblems, in particular to elementary 

subproblems, which are not further decomposed. The elementary problems can be seen as 
problems encompassed by constraints, for instance the elementary problem associated to the 
constraint c8 = P[x11,x12] can be stated as follows  CSP8 = (({x11,x12},{d11,d12}),{c8}).  

In general case any CSP may be decomposed, however, either into a set of loosely coupled 
problems or into a set of strongly coupled problems.  

The problems CSP = ((X,D),C) and CSP’ = ((X’,D’)C’) are loosely coupled ones if the 
following conditions hold: 

 
i)    X  ∩ X’ = ∅   
ii)    ∀ c∈C : D(c) ∩ X’ = ∅         (1) 
iii) ∀ c’∈C’:  D(c’) ∩ X = ∅   
 

where: 
D(c) – is the set of variables included in the constraint c. 
 
In turn any element of a set of loosely coupled problems is a strongly coupled problem 

following the condition below 
 
∀Xj*,Xi *⊂X*, ∃Xa *, Xb *,…, Xz * ⊂ X* : Xj* ∩ Xa* ≠ ∅ ∧ Xa* ∩ Xb* ≠  ∅ ∧ ... (2) 

... ∧ Xz* ∩  Xi* ≠ ∅ 
 
where: 

SP* = ((X*,D*)C*) – a strongly coupled problem composed a set of elementary 
problems {SP1*,SP2*,...,SPk*}  

 
It means, that for any two pairs of elementary problems of a strongly coupled problem there 

exists either nonempty subset of common variables or there exists a set of elementary 
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subproblems constraints of which provide a chine of nonempty subsets of variables (following 
the pairs of elementary problems while linking the considered pair). 

In turn, a strongly coupled problem may be decomposed into a set of so called dependent 
problems which are strongly coupled ones. It is assumed, however, that any pair of dependent 
problems follows the condition (3). 

 
∀Xj^,Xi ^⊂X, ∃Xk * ⊂ X | Xj^ ∩ Xi^ = ∅ ∧ Xk * ∩ (∪{X’*|X’*∈Xj^}) ≠ ∅ ∧ …    (3) 

…  ∧   Xk *∩ (∪{X*|X*∈Xi^}) ≠ ∅ 
 
where: 
CSPj^ = ((Xj^,Dj^),Cj^), CSPi^ = ((Xi^,Di^),Ci^) -  are the strongly coupled  

subproblems of the strongly connected problem CSP = ((X,D),C),  
CSP* = ((X*,D*),C*) – elementary subproblem of the problem CSP = ((X,D)C). 

 
Illustration of the CSP = ((X,D),C) decomposition into the sets of loosely and strongly 

coupled as well as dependent subproblems is shown in Fig.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    strongly coupled subproblems 
 

Fig.4. Decomposition of  CSP = ((X,D),C)  into losely and strongly coupled as well as 
dependent subproblems. 

 
In order to summarize the above considerations it should be noted that a CSP = ((X,D),C) 

can be decomposed into a set of: 
− elementary subproblems, 
− loosely coupled subproblems,  
− dependent subproblems of a strongly coupled problems. 
Instead of the first two ways of possible CSP decompositions the third one does not lead to 

a unique decomposition. For instance, besides of the possible decomposition shown in Fig. 5, 
an alternative the more detailed one can be considered as shown in Fig. 6. Such observation 
enables to consider a tree of all the potentially available decompositions in a form of 
a AND/OR –like digraph, see Fig. 7.  
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Different possibilities of CSP decomposition enable one to take into account the real life 
constraints that follow from: 

− a way of a problem specification (i.e., a set of elementary problems recognized)  
− a programming language implementation (some structures of dependent problems 

may or may not be accepted by CP/CLP packages) 
− a way of a CSP resolution (e.g., the loosely coupled subproblems can be computed 

parallel within an multiprocessor environment) 
− a searching strategy applied (the order of subproblems resolution results in a CSP 

makespan). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig.5. The possible decomposition of the CSP problem into the two loosely coupled 
subproblems CSP1*, CSP2*, and decomposition of the CSP1* into the two dependent 

subproblems  CSP1^ and CSP1^ 
 

The above observation leads to a concept of a reference model of a CSP decomposition, 
i.e., the model encompassing an object-like nature of the CSP structure [12], [15]. So, since 
each subproblem corresponds to a standard constraint problem structure: (({a set of decision 
variables,} (a set of variable domains}), {a set of constraints}), hence some AND/OR – like graph 
representation can be used both in the course of analysis of the CSP programming (i.e. CP/CLP 
problem specification) and its resolution.  

The concept of the CSP decomposition reference model provides a well suited framework 
for preliminary evaluation of search trees pruning strategies. 

 
 

4. STATE SPACE PRUNING STRATEGIES 
 
Consider  the CSP = ((X,D),C), where X = {x1,x2,x3}, D = {D1,D2,D3}, C = {c1,c2,c3}, and  

where: D1 = D2 = D3 = {1,2} , c1 = P[x1],   c2 = P[x2],    c3 = P[x3]. The CSP consists of the 
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following three elementary problems: CSP1 = (({x1},{D1}),{c1}), CSP2 = (({x2},{D2}),{c2}), 
CSP3 = (({x3}),{D3}),{c3}). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Legend: 
CSP2*, CSP 

6*, CSP 
8* - elementary subproblems,  

CSP1^ , CSP2^ , CSP2*, CSP 
6*, CSP 

8* - strongly coupled subproblems  
CSP1* , CSP2*  = (({x1-x10},{D1-D10}),{c1-c7}) - loosely coupled subproblems, 

- decomposition into dependent subproblems 
- decomposition into loosely coupled subproblems 

 
Fig.6. Alternative way of the CSP problem decomposition 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7. AND/OR-like graph  representation of the CSP possible decompositions 
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The number of possible solutions is equal to 2 ∗ 2 ∗ 2 = 8, however the number of 
backtrackings required to check their feasibility is greater, and equals to 11 (see Fig. 8). The 
number of backtrackings can be estimated by the formulae (4). 

)1()(
11

−= ∏∑
==

i

h

j
h

L

i
ZjN           (4) 

where: 
k – the index of  the k-th elementary problem of a CSP, 
L – the number of elementary problems 
j – the j-th permutation of the set of elementary  problem, 
h – the index of  an elementary problem placed at the h-th position in the jk-th permutation  

of the set of elementary problem obtained from the CSP 

)(kZ j
h – a number of potential assignments of the decision variables of  the k-th  

elementary problem placed at the h-th position in the jk-th permutation. 
 
 

 
 
 
 
 
 
 
 
 
 
                        - labeled backtracking  

 
Fig.8.  Searching tree encompassed by backtrackings 

 
So, assuming (PSO2,PSO1 ,PSO3) as the j-th  permutation of  elementary problems {PSO1, 

PSO2  ,PSO3 } as well as )2(Z j
h  = )1(Z j

h = )3(Z j
h  = 2, the number of backtrackings N(j) 

equals to:  1 + 2∗2 – 1 + 2∗2∗2 – 1 = 11 
In general case, however, since the cardinality of a set of possible solutions of each 

elementary problem {CSP1,CSP2,…,CSPL}of CSP can be seen as a multiple of  its variables 
domains, hence the possible orders of CSP resolution are determined by L! permutations of the 
set of elementary problems. Of course, the different permutations lead to the different results, 
i.e. different numbers of backtrackings.  

In order to illustrate this fact let us consider the CSP = ((X,D),C), where X = 
{x1,x2,x3,x4,x5,x6}, D = {d1,d2,d3,d4,d5,d6}, C = {c1,c2,c3}, and  where: D1 = D2 = D3 = 
{1,2} , D4 = D5 = D6 = {1,2,3} c1 = P[x1,x2],   c2 = P[x3,x4],    c3 = P[x5,x6].  The CSP 
considered consists of the following three elementary problems: CSP1 = 
(({x1,x2},{D1.D2}),{c1}), CSP2 = (({x3.x4},{D3,D4}),{c2}), CSP3 = (({x5,x6}),{D5,D6}),{c3}). 
Among the possible 3! permutations let us focus on the following two ones: (PSO1,PSO2 
,PSO3), and (PSO3,PSO1,PSO2).   

1 2

3

4 8 1195
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Since CSP1 results in possible 2 ∗ 2 = 4  solutions (assignments), and CSP2  results in 
possible 2 ∗ 3 = 6  solutions, and CSP3 results in possible 3 ∗ 3 = 9 solutions, hence first 
permutation result in 4 – 1 + 4∗6 – 1 + 4∗6∗9 – 1 = 241  backtrackings, and the second one in   
9 – 1 + 9∗4 – 1 + 9∗4∗6 – 1 = 258  backtrackings.  

In the considered case, however, the way of backtrackings estimation suffers from omitting 
the number of possible backtrackings at elementary problem levels. Note, that for the case 
when elementary problem consists of three and more variables a number of  required 
backtracking is bigger than number of possible solutions to the problem. 

In order to overcome this disadvantage the modified formulas are proposed (5), (6). 
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          (5) 

where: 
L – the number of elementary problems of a CSP, 
j – the j-th permutation of a set of the elementary problems of a CSP, 
r – the index of an elementary problem placed at the r-th position in the j-th permutation, 
k – the index of the k-th elementary problem,  
jk – the jk-th permutation of a set of the k-th elementary problem variables, 

),( kjk
j

rN – the number of potential backtrackings of the k-th elementary problem  
resolved due to the jk-permutation of variables, the k-th elementary problem is placed 
at the r-th position in the j-th permutation 
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where: 
k – the index of the k-th elementary problem of a CSP, 
L(k) – the number of the variables of the k-th elementary problem, 
i – the index of the  i-th variable of the k-th elementary problem, 
jk – the k-th permutation of the variables of the k-th elementary problem, 
h – the index of the variable placed at the h-th position in the jk-th permutation of the k-th  

elementary problem variables, 

),( kiZ kj
h – the cardinality of the i-th variable domain, i.e., the variable placed at the h-the  

position in the jk-th variables permutation of the k-th elementary problem  
 
So, in order to obtain a correct evaluation of the backtracking number required to find a set 

of admissible solutions of a CSP, the permutation of elementary problems as well as variables 
permutation in each elementary problem have to be assumed. The variables and elementary 
problems permutation determine the order of variables substitution and elementary problems 
resolution, respectively.  

In the case considered, for the set of elementary problems {CSP1,CSP2 ,CSP3} let us 
consider: 

• the permutation (CSP1,CSP2 ,CSP3) and the following variables permutation: (x1,x2) 
for CSP1, (x3,x4) for CSP2, and    (x5,x6) for CSP3 , 

• the permutation (CSP3,CSP1 ,CSP2) and the following variables permutation: (x1,x2) 
for CSP1, (x3,x4) for CSP2, and    (x5,x6) for CSP3. 
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In the first case, since CSP1 results (see formulae (5)) in possible 1 + 2 ∗ 2 –1 = 4 solutions 
(assignments), and CSP2  results in possible 1 + 2 ∗ 3 – 1= 6  solutions, and CSP3 results in 
possible 2 + 3 ∗ 3 – 1 = 10 solutions, hence due to the formulae (6) the number of 
backtrackings equals to  4 – 1 + 4∗6 – 1 + 4∗6∗10 – 1 = 275  backtrackings. In the second case, 
however, the number of backtrackings equals to  10 – 1 + 10∗4 – 1 + 10∗4∗6 – 1 = 287  
backtrackings. 

Assuming a new variables permutation: (x1,x2) for CSP1, (x3,x4) for CSP2, and  (x5,x6) for 
CSP3, the relevant numbers of backtrackings equal to:  309, and 357, respectively. 

The above observation providing a way of pruning strategies evaluation can be generalized 
for the case of loosely and strongly coupled subproblems of CSP. The formulas allowing one to 
evaluate the pruning strategies for a given CSP decomposition as well as for assumed 
subproblems and variables permutation see the formulae (7), and (8), respectively. 
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where: 
L – the number of the subproblems obtained due to the d-th decomposition of a CSP, 
jd – the jd-th permutation of a set of subproblems obtained due to the d-th decomposition of  

a CSP, 
r – the index of the subproblem placed in the r-th position in the jd-th permutation, 
k – the k-th subproblem of a set of subproblems obtained due to the d-th decomposition of 

a CSP, 
jk – the jk-th permutation of a set of the k-th subproblem variables, 

),( kjk
j

rN d – the number of potential backtrackings of the k-th subproblem placed at  
the r-th position in the jd-th permutation 
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where: 
k – the k-th subproblem of a set of subproblems obtained due to the d-th decomposition of  

a CSP, 
L(k) – the number of the variables of the k-th subproblem, 
i – the index of the i-th variable of the k-th subproblem, 
jk – the k-th permutation of the variables of the k-th subproblem, 
h – the index of the variable placed at the h-th position in the jk-th permutation of the k-th  

subproblem variables, 

),( kiZ kj
h – the cardinality of the i-th variable domain, i.e., the variable placed at the h-th  

position in the jk-th variables permutation of the k-th subproblem  
 
In order to summarize the section it should be noticed that since with arcs of a AND/OR 

graph it is possible to bind weight factors determining the necessary number of searches, hence 
such representation provides a way to chose the best searching strategy, i.e. a variant with least 
number of backtrackings. In the case of a CSP decomposition into a set of 
{CSP1,CSP2,…,CSPL} the relevant searching tree is shown in Fig. 9. 
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Fig.9. Searching tree for CSP decomposed into the set of elementary problems 
In the case considered the number W of possible searching strategies for the CSP 

composed of L elementary problems consisting of the K1, K2,…,KL variables can  be estimated 
due to the  upper bound stated by the formulae (9). It means that for the CSP consisting of L = 
10 elementary problems each of them containing Ki = 2 variables the number of possible 
searching is equal to SS = 21010! ≈   3,6 * 107. Note that the estimation formula does not take 
into account the number of possible CSP decompositions!  

!LKMW L=        (9) 

where  
}{max

},...,1{
i
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KW

∈
=  

Therefore the problem of selection of the optimal (i.e. requiring the less backtrackings) 
state space pruning strategy seems to be at least NP-complete one. So, the branch and bound 
method can be considered in the course of the best searching strategy selection. The idea 
standing behind of this concept is shown in Fig. 10. 

For a given CSP decomposition, i.e., for a given set of subproblems {CSP1,CSP2,…,CSPL} 
the set of upper bound values  {W1,W2,…,WL} is calculated  (due to the formulae (7) and/or (8). 
Than for the subproblem to which the lowest value of the upper bound is assigned the next 
subproblem is selected as to find the order in which the subproblems should be resolved while 
requiring the lowest number of backtrackings.  

In general case, instead of the upper bound considered till now the other measures 
(heuristics) could be taken into account. For the illustration of such possibility let us consider 
the following example.  
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Fig.10. Branch and bound method approach to pruning strategy selection 
 
Given a CSP = ((X,D),C) such that X = {x1, x2, x3, x4, x5}, D = {D1, D2, D3, D4, D5}, D1, = 

D2 = D3 = D4  = D5 = {1,2,3,…,100}, C= {c1, c2, c3, c4} , c1 = P[2*x1+x2 ≤ x3] , c2 = P[2*x2 = 
x4] , c3 = P[x4*x5 ≤ x1*x3] , c4 = P[x3*x4*x5 ≤ 300]. 

As result of constraints propagation, i.e., the reduction of the domains D1={1,2,…,36},  
D2={1,2,…,24}, D3= {3,4,…,74}, D4= {4,5,…,96}, D5= {1,2,…,24}  the state space size of  
1005  is reduced to the size equal to 138 848 256. The constraint influence on the state space 
size reduction is shown in the Table 1. 

Using the results obtained one may consider a searching strategy employing the order of 
constraints propagation. Such strategy assumes step by step elementary problems resolution 
emphasizing a dynamic of state space reduction (i.e., a heuristics assuming: “faster state space 
reduction, shorter searching time”). The evaluation of the possible strategies is shown in the 
Table 2.     
 
Tab.1. The state space size reduction influenced by constraints. 

 
Domains of decision variables Constraints

D1 D2 D3 D4 D5 

The rate of the state 
space reduction 

c1 1 - 49 1 - 98 3 - 100 1 - 100 1 - 100 52,94 % 

c2 1 - 100 1 - 25 1 - 100 4 - 100 1 - 100 75,75 % 

c3 1 - 100 1 - 100 1 - 100 1 - 100 1 - 100 0% 

c4 1 - 100 1 - 100 1 - 100 1 - 100 1 - 100 0% 
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Tab.2. The state space reduction pruning strategies based on the step by step constraints 
propagation 

 
 Constraints and corresponding state space reduction rate 

Searching strategy 
Searching 
 Strategy  %  %  %  % 

1 c1 52,49 c2 88,35 c3 88,35 c4 98,61 
2 c1 52,49 c2 88,35 c4 98,61 c3 98,61 
3 c1 52,49 c3 52,94 c2 88,35 c4 98,61 
4 c1 52,49 c3 52,94 c4 53,87 c2 98,61 
5 c1 52,49 c4 53,87 c2 98,61 c3 98,61 
6 c1 52,49 c4 53,87 c3 53,87 c2 98,61 
7 c2 75,75 c1 88,35 c) 88,35 c4 98,61 
8 c2 75,75 c1 88,35 c4 98,61 c3 98,61 
9 c2 75,75 c3 75,75 c1 88,35 cd 98,61 

10 c2 75,75 c3 75,75 c4 86,72 c1 98,61 
11 c2 75,75 c4 86,72 c1 98,61 c3 98,61 
12 c2 75,75 c4 86,72 c3 86,72 c1 98,61 

 
The elements of the third, fifth, seventh and the last column in the Table 2 are calculated as follows:  
− the third column [1-(49 ⋅ 98 ⋅ 98 ⋅ 100 ⋅ 100)/(1005)] ⋅ 100% = 52,49%  for the constraint c1  
− the fifth column [1-(49 ⋅ 25 ⋅ 98 ⋅ 97 ⋅ 100)/(1005)] ⋅ 100% = 88,35%  for the constraint c3 
− the seventh column [1-(49 ⋅ 25 ⋅ 98 ⋅ 97 ⋅ 100)/(1005)] ⋅ 100% = 88,35%  for the constraint c3 
− the last column [1-(49 ⋅ 25 ⋅ 98 ⋅ 97 ⋅ 100)/(1005)] ⋅ 100% = 88,35%  for the constraint c4 

Note that nonlinear constraints are less effective in the state space size reduction than the 
linear ones. 
 
 
5. TASK ORIENTED DECISION SUPPORT TOOLS 
 

Since the reference model, i.e. an object-like AND/OR graph framework, provides the 
possibility to estimate the number of decision variables domains values substitution, hence the 
influence of data structure, sequence of elementary subproblems solution and domain size on 
decision making time may be evaluated as well. In other words, the model considered provides 
a well suited framework for development (taking into account the ways of possible problem 
specification, available CP/CLP languages, and searching strategies) of a CP-based 
programming methodology as well as the development of the  task oriented software tools 
aimed at the SMEs decision support, e.g. regarding production flow planning.  

Many often repeating question regards of the question: Whether in a given shop employed 
with the machine tools, automated guided vehicles (AGVs), and buffers and warehouses 
a production order submitted can be completed due assumed period? A production order 
includes the type of final product to be manufactured, the required quantity and defined due 
date as well as a final cost a customer has to pay. The product type is usually defined as the 
combination of components that a machine toll is capable of handling. The product type is 
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specified by an execution route (production routing) that includes one or more execution steps. 
In general case, however, a given final product can be produced differently due to alternative 
execution routes that differ in the execution steps. 

The question stated above is usually considered under assumption in the enterprise executes 
several project-like production orders, however some production capability are still available. 
So, the question is whether the production order at hand can be accepted for execution in an 
enterprise where some resources availability is constrained in time?  

The typical workshop layout (see Fig. 11) enables to distinguish two kinds of flows 
regarding production and transportation routings, respectively. These flows interact each other 
(e.g., via production and batch sizes, AGVs, buffers and warehouses capacities, and so on) and 
falls into the following two main subproblems:  manufacturing and transportation that may be 
resolved in two alternative orders (see Fig.12). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.11. The workshop layout 

 
 
 
 
 
 

Fig.12. The possible orders of production flow subproblems resolution 
 
The possible decomposition of the production flow planning is shown in Fig 13. So, the 

relevant CSP problem consists of two subproblems corresponding to the manufacturing 
(denoted by CSP1) and transportation (denoted by G) subflows. In turn, the subproblem of 
manufacturing falls into production routing (denoted by A) and production batch planning and 
scheduling (denoted by CSP2). The last subproblem  falls into subproblem of scheduling 
(denoted by F), and production batch planning (denoted by CSP2,1). Finally, the production 
batch planning subproblems falls into the calculation of the number of production batches 
(denoted by B) and production batch sizing (denoted by E).  
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Fig.13. Decomposition of the production flow planning problem 
 
There are growing needs for decision support tools capable to assist a decision maker in the 

course of a new production order evaluation. The possible approach based on CP/CLP 
paradigm assumes possibility to adjust the ways of problem specification, its programming 
language implementation as well as a searching strategy selection to a class of production 
planning problems (specified by scale, production type, e.g. assembly or machining, and so on) 
as to respond in on line mode.  

Programming methodology proposed takes into account the constraints imposed by 
a programmer experience (possible problem statements), by a set of available software tools 
(CP/CLP languages), and a set of searching strategies (build-in the software tools as well as 
those proposed by programmers) (see Fig.14). The idea standing behind of this approach 
assumes that a decision maker has to be supported in the course of a standard requests and 
regarding known in advance a class of situations that may occur in the SME at hand. 
 
 
 
 
 
 
 
 
 
 
 

Fig.14. Stages of the CP-based programming methodology 
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Following these requirements a programmer has to develop a well adjusted CP/CLP based 
decision support tool encompassing a specific of an enterprise and production orders 
considered. 

The illustration of the implementation of the methodology considered into the task oriented 
software tools supporting the SME in the course of decision making is shown in Fig. 15. The 
way of admissible problem resolution is underlined by the bold frames and arcs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.15. The tree of possible ways of a CSP programming 
 
Since efficiency of programming (i.e. a size of resolved problem) depends on selected 

problem specification, a software tool employed and a chosen searching strategy, hence 
designing of the task oriented tools seems to be the only reasonable approach to set-up a CP-
based decision support software. It means, for a given class of CSPs (e.g. production flow 
planning ones) and a CP/CLP language assumed, on the base of an experience gathered both 
from the analysis of  the reference model of CSP decomposition, and multiple experiments that 
is possible to develop searching strategy optimal in the sense of minimal number of potential 
backtrackings. 

 
 

6. CONCLUDING REMARKS 
 
A CP/CLP – based modeling framework provides a good platform for consistency checking 

between the production order completion requirements and a workshop capability offered. The 
CP/CLP methodology presented here seem s to be a promising alternative for commercially 
available tools based on other technologies, such as a class of ERP systems. Their application 
in solving a real-life problem is quite limited [12], [13]. 

Also, the proposed approach can be considered as a contribution to project-driven 
production flow management applied in make-to-order companies as well as for prototyping of 
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the virtual organization structures. That is especially important in the context of a cheap and 
user-friendly decision support for the SMEs. Further research is aimed at developing task 
oriented searching strategies, implementation of which will support the SME’s decision 
making process.   
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