
 161

decision support, constraint logic programming, production planning, modeling, scheduling

Zbigniew BANASZAK*, Jerzy JÓZEFCZYK**

TOWARDS DEDICATED DECISION SUPPORT TOOLS:
CLP-BASED APPROACH

Abstract

Constraint programming (CP) is an emergent software technology for
declarative description and effective solving of large combinatorial problems
especially in areas of integrated production planning. In that context, the CP can
be considered as a well-suited framework for development of decision making
software supporting small and medium size enterprises in the course of
Production Process Planning (PPP). The problem considered regards of finding
of computationally effective approach aimed at scheduling of a new project
subject to constraints imposed by a multi–project environment. In other words,
we are looking for an answer whether a given production order specified by its
cost and completion time can be accepted in a given manufacturing system
specified by available production capability, i.e., the time-constrained resources
availability. The problem belongs to a class of multi-mode case project
scheduling problems, where the problem of finding a feasible solution is NP-
complete. The aim of the paper is to present the CP modeling framework as well
as to illustrate its application to decision making in the case of a new production
order evaluation. So, the contribution emphasizes benefits derived from CP-
based DSS and focuses on constraint satisfaction driven decision-making rather
than on an optimal solution searching.

1. INTRODUCTION

Today’s manufacturing environment can be characterized in terms of many factors - the
maturity of manufacturing procedures, technologies and standards; the efficiency of logistic
chains and global telecommunication infrastructure; the penetration of artificial intelligence
methods in the area of control and decision support; and practically unlimited computing
resources. But the key factor for companies confronting the challenge of remaining competitive
in an era of globalization is undoubtedly the capability to fast and accurate decision making,
especially in project management domain.

* Prof., Technical University of Koszalin, Department of Electronics and Informatics,

75-453 Koszalin, Poland, e-mail: banaszak@tu.koszalin.pl
** Prof., Systems Research Institute of Polish Academy of Sciences, Laboratory of Knowledge Systems and

Artificial Intelligence, Podwale St. 75, 50–449 Wroclaw, Poland, e-mail: Jerzy.Jozefczyk@pwr.wroc.pl

 162

Currently, the field of project-oriented management of manufacturing systems is driven
primarily by market forces. Some of the most challenging issues that arise in the domain of
distributed manufacturing technology and management include manufacturability analysis,
validation and evaluation of process plans, partnership in virtual enterprises, process design,
and optimization of production plans and schedules. These issues are easily unified within
a framework of a project-driven manufacturing concept which is focusing on the Small and
Medium size Enterprises (SMEs) where products are manufactured based on a make-to-order
or a build-to-order principle.

Most companies, particularly SME have to manage various projects, which share a pool of
constrained resources, taking into account various objectives at the same time. Due to the
surveys conducted about 80% of companies have to deal with multiple projects, what
corresponds to the other data stating that about 90% of all projects occur in the multiproject
context. Since the project management problems belong to a class of NP-complete ones, thus
the new methods and techniques aimed at real-life constraints imposing on-line decision
making are of great importance. Such methods enhancing an on-line project management, and
supporting a manager in the course of decision making, e.g. in the course of evaluation whether
a new project can be accepted to be processed in a multi-project environment of
a manufacturing system at hand or not, could be included into Decision Support Systems
(DSSs) tools integrated into standard project management software like MS Project or CA-
Super Project [1].

Regardless of its character and scope of business activities a modern enterprise, has to build
a project-driven development strategy in order to respond to challenges imposed by growing
complexity and globalization. Managers need to be able to utilize a modern DSS as to
undertake optimal business decisions in further strategic perspective of enterprise operation. In
this context this contribution covers various issues of decision making while providing the
concept of Constraint Programming (CP) as well as modeling and designing of decision
support tools aimed at management in SMEs and/or the associated Extended Enterprise.

The main objective of DSS aimed at the production flow planning is the coordination of
processes and activities related to work order processing, i.e., regarding the transportation,
inventory management, warehousing and production. In other words the goal is to achieve
a well-synchronized behavior of dynamically interacting components, where the right quantity
of the right material is provided in the right place, and at the right time [1]. The decision
making regards of the question: Whether a given production order specified by its cost and
completion time can be accepted for processing in a SME specified by available production
capability, i.e., the time-constrained resources availability (see Fig.1).The problem considered
regards of finding of computationally effective approach aimed at scheduling of a new project
subject to constraints imposed by a multi–project environment.

That is worth to note that the currently available software tools allow pre-emption;
however, they are not designed to cope with company production capability constraints in
terms of resource and time availability. Moreover, they do not permit to consider production
planning in a unified way to enable an integrated approach to such different tasks as production
and transportation routings, production and transportation batch sizing as well as tasks
scheduling.

In that context, Constraint Programming/Constraint Logic Programming (CP/CLP)
languages [6], [7], employing the constraints propagation concept and by providing unified
constraints specification, seem to be well suited for modeling of a company real-life and day-
to-day decision-making [4], [5], [9], [10] process.

 163

The rest of the paper is organized as follows: Section 2 describes the modeling framework
enabling to state the problem. A concept of the decomposition reference model of constraint
satisfaction problem that stands behind searching for a feasible production flow prototyping is
then presented in Section 3. The issues of the state space pruning strategies development based
on the concept of a reference model of constraint satisfaction problem decomposition are
discussed in Section 4. In Section 5, a concept of the CP/CLP-based approach to DSS
designing aimed at a SME is investigated. Conclusions are presented in Section 6.

Fig.1. Decision making problem: Do the consumer’s requirements can be balanced with

producer’s capability?

2. CP-BASED PROBLEM SPECIFICATION

Constraint programming (CP) is an emergent software technology for declarative
description and effective solving of large combinatorial problems especially in areas of
integrated production planning. Since a constraint can be treated as a logical relation among
several variables, each one taking a value in a given (usually discrete) domain, hence the idea
of CP is to solve problems by stating requirements (constraints) specifying a problem at hand,
and then finding a solution satisfying all the constraints [6].

CP is a framework for solving combinatorial problems specified by pairs: <a set of
variables and associated to them domains, a set of constraints restricting the possible
combinations of the variables’ values>. Constraints propagation, i.e., reference engine, is
based on the idea of using constraints actively to prune the search space. The scope of

Decision Support System

Constraints negotiation that must be
satisfied in order to balance an
enterprise capability with a production
order requirements

Production flow specification:
manufacturing and transportation
routes, batch sizes, schedules, etc.

YESNO

Company’s capability Consumer’s requirements

Do the consumer’s requirements can be balanced with producer’s capability?

 164

propagation techniques, i.e. local consistency checking, is to reach a certain level of
consistency in order to accelerate search procedures by drastically reducing the size of a search
tree [7], [15].

A constraint satisfaction problem CSP = ((X,D),C), can be stated as follows. Consider
a finite set of n variables X = {x1,x2,...,xn}, their finite and discrete domains D =
{D1,D2,...,Dn}, where Di = {di1,di2,…,dir}, and a finite set of constraints C = {c1,c2,...,cm}.
Each constraint treated as a predicate can be seen as an n-ary relation defined on the Cartesian
product D1 x D2 x…x Dn .

The solution to the CSP is a vector (d1i,d2k,…,dnj) such that the entries assignments satisfy
all the constraints C. So, the task is to find values of variables satisfying all the constraints,
i.e., a feasible valuation. In general case, however, the constraints can express any arbitrary
analytical and/or logical formulae as well as bind variables with different non-numerical event
domains.

An inference engine employed consists of the following two stages: constraints propagation
and variables distribution, respectively. In order to illustrate its mechanism let us consider the
CSP = ((X,D),C), where X = {x1, x2, x3} is the set of variables and D = {Dx1,Dx2,Dx3} is the set
of their domains: Dx1 = {1,2,3,4,5,6}, Dx2 = {1,2,3,4,5,6}, Dx3 = {1,2,3,4,5,6}. Suppose the
following set of constraints C = {α,β, γ}, where α: x1 ≥ x2 + 1, β: x2 ≥ x3 + 2, γ: x3 < x1 – x2.

Due to the first stage one of possible ways of constraints propagation is shown below:
Dx1 = {1,2,3,4,5,6} Dx1 = {2,3,4,5,6}
Dx2 = {1,2,3,4,5,6} Dx2 = {1,2,3,4,5}
Dx3 = {1,2,3,4,5,6} α Dx3 = {1,2,3,4,5,6}

Dx1 = {2,3,4,5,6} Dx1 = {4,5,6}
Dx2 = {1,2,3,4,5} Dx2 = {3,4,5}
Dx3 = {1,2,3,4,5,6} β Dx3= {1,2,3}

Dx1 = {4,5,6} Dx1 = {5,6}
Dx2 = {3,4,5} Dx2 = {3,4}
Dx3 = {1,2,3} γ Dx3 = {1,2}.

Note, the initial space containing of 6 x 6 x 6 = 216 potential solutions is reduced to its

subspace size of 2 x 2 x 2 = 8.
In order to select a subset of feasible solutions the another stage regarding the variables

distribution has to be performed, e.g., for each element of the domain Dx1 = {5,6} the phase of
constraints propagation is once more applied. So, the resultant set of feasible solutions consists
of the following combinations of variables value assignment:
x1, x2, x3 x1, x2, x3 x1, x2, x3
(5 , 3 , 1), (6, 3, 1), (6, 4, 1).

The illustration of searching tree provided by OZ Explorer is shown in Fig.2. Of course,
the stage of variables distribution my start with other domains as well, e.g., from x2 or x3. In
case such distributions do not result in unique variables’ domains, the stage of variables
distribution (for example for x2) has to be performed again. The situation when constraints
propagation and/or variables distribution result in an empty set of feasible solutions
corresponds to discrepancy of the CSP considered.

In that context, the CP can be considered as a well-suited framework for development of
decision making software aimed at support of the SMEs in the course of the Production

 165

Process Planning (PPP). Because of its declarative nature, for a use that is enough to state what
has to be solved instead how to solve it [4].

Fig.2. Searching tree and the set of feasible solutions

The aim of the contribution is to present the CP modeling framework as well as to illustrate
its application to decision making in the case of a new production order evaluation, i.e. PPP.
Finding an answer to the question whether a given work order can be accepted to be processed
in a production system seems to be a fundamental from the customer-driven, and highly
competitive market point of view. In that context decision making regards to the question
whether enterprise’s capability allows to fulfill constraints imposed by the production order
requirements, i.e. whether its completion time, batch size, and its delivery period satisfy the
customer requirements while satisfying constraints imposed by the enterprise configuration
taking into account available resources, know how, experience, and so on. In the case of the
response to this question being positive, i.e. there exist a way guaranteeing to complete
a production order, the next question regards of finding of the most efficient one (e.g. as to be
competitive on the market) [15].

3. MODELLING FRAMEWORK

Consider CSP = ((X,D),C), such that X = {A,B}, D = {DA,DB}, where DA = {1,2,3}, DB =

{3,4,...,9}, and C = {c1,c2}, where c1 = P[AB ⋅≥ 3], and c2 = P[9>+ BA]. Depends on
the order in which variables are distributed the time required to obtain a set of feasible solutions may
differ dramatically. In the case considered, starting with variable A requires twice less searching
than in the case when variables distribution begin from variable B, see Fig.3.

It’s easy to notice, that efficiency of a searching strategy can be evaluated in advance on the
base of domains’ sizes. In order to discuss this possibility let us introduce a concept of
a reference model of the CSP decomposition. Consider the CSP = ((X,D),C), where X =
{x1,x2,...,x12}, D = {D1,D2,...,D12}, C = {c1,c2,...,c8}, and where:

 166

c1 = P[x1,x2,x3], c2 = P[x2,x4,x5], c3 = P[x4,x6], c4 = P[x7,x8], c5 = P[x4,x7],
c6 = P[x9,x10], c7 = P[x8,x9], c8 = P[x11,x12].

Fig.3. Decision variables distribution, a) B follows A, b) A follows B

The problem in natural way decomposes into subproblems, in particular to elementary

subproblems, which are not further decomposed. The elementary problems can be seen as
problems encompassed by constraints, for instance the elementary problem associated to the
constraint c8 = P[x11,x12] can be stated as follows CSP8 = (({x11,x12},{d11,d12}),{c8}).

In general case any CSP may be decomposed, however, either into a set of loosely coupled
problems or into a set of strongly coupled problems.

The problems CSP = ((X,D),C) and CSP’ = ((X’,D’)C’) are loosely coupled ones if the
following conditions hold:

i) X ∩ X’ = ∅
ii) ∀ c∈C : D(c) ∩ X’ = ∅ (1)
iii) ∀ c’∈C’: D(c’) ∩ X = ∅

where:
D(c) – is the set of variables included in the constraint c.

In turn any element of a set of loosely coupled problems is a strongly coupled problem

following the condition below

∀Xj*,Xi *⊂X*, ∃Xa *, Xb *,…, Xz * ⊂ X* : Xj* ∩ Xa* ≠ ∅ ∧ Xa* ∩ Xb* ≠ ∅ ∧ ... (2)

... ∧ Xz* ∩ Xi* ≠ ∅

where:

SP* = ((X*,D*)C*) – a strongly coupled problem composed a set of elementary
problems {SP1*,SP2*,...,SPk*}

It means, that for any two pairs of elementary problems of a strongly coupled problem there

exists either nonempty subset of common variables or there exists a set of elementary

B=3
B=4

B=5 B=6

b)

B=7 B=8
B=9

A=2

A=1 A=2 A=3

A=1..3

 A solution does not exist

Distribution

Admissible solution
 Variables domains Legend:

Constraints
propagation

Distribution

A=1 A=2 A=3

B=9 B=9

B=9 B=8

B=8..9

a)

A=nil

A=1..3,
B=3..9

A=1..3,
B=3..9

Constraints
propagation

Constraints
propagation

Constraints
propagation

Distribution

 167

subproblems constraints of which provide a chine of nonempty subsets of variables (following
the pairs of elementary problems while linking the considered pair).

In turn, a strongly coupled problem may be decomposed into a set of so called dependent
problems which are strongly coupled ones. It is assumed, however, that any pair of dependent
problems follows the condition (3).

∀Xj^,Xi ^⊂X, ∃Xk * ⊂ X | Xj^ ∩ Xi^ = ∅ ∧ Xk * ∩ (∪{X’*|X’*∈Xj^}) ≠ ∅ ∧ … (3)

… ∧ Xk *∩ (∪{X*|X*∈Xi^}) ≠ ∅

where:
CSPj^ = ((Xj^,Dj^),Cj^), CSPi^ = ((Xi^,Di^),Ci^) - are the strongly coupled

subproblems of the strongly connected problem CSP = ((X,D),C),
CSP* = ((X*,D*),C*) – elementary subproblem of the problem CSP = ((X,D)C).

Illustration of the CSP = ((X,D),C) decomposition into the sets of loosely and strongly

coupled as well as dependent subproblems is shown in Fig.4.

 strongly coupled subproblems

Fig.4. Decomposition of CSP = ((X,D),C) into losely and strongly coupled as well as
dependent subproblems.

In order to summarize the above considerations it should be noted that a CSP = ((X,D),C)

can be decomposed into a set of:
− elementary subproblems,
− loosely coupled subproblems,
− dependent subproblems of a strongly coupled problems.
Instead of the first two ways of possible CSP decompositions the third one does not lead to

a unique decomposition. For instance, besides of the possible decomposition shown in Fig. 5,
an alternative the more detailed one can be considered as shown in Fig. 6. Such observation
enables to consider a tree of all the potentially available decompositions in a form of
a AND/OR –like digraph, see Fig. 7.

CSP1

{x1, x3, x2}

CSP2

{x2, x5, x4}

 CSP3
{x6, x4}

CSP5

{x4, x7}

CSP4

{x7, x8}

CSP6

{x8, x9}

CSP7

{x9, x10}

CSP8

{x11, x12}

dependent subproblems loosely coupled subproblems

 168

Different possibilities of CSP decomposition enable one to take into account the real life
constraints that follow from:

− a way of a problem specification (i.e., a set of elementary problems recognized)
− a programming language implementation (some structures of dependent problems

may or may not be accepted by CP/CLP packages)
− a way of a CSP resolution (e.g., the loosely coupled subproblems can be computed

parallel within an multiprocessor environment)
− a searching strategy applied (the order of subproblems resolution results in a CSP

makespan).

Fig.5. The possible decomposition of the CSP problem into the two loosely coupled
subproblems CSP1*, CSP2*, and decomposition of the CSP1* into the two dependent

subproblems CSP1^ and CSP1^

The above observation leads to a concept of a reference model of a CSP decomposition,
i.e., the model encompassing an object-like nature of the CSP structure [12], [15]. So, since
each subproblem corresponds to a standard constraint problem structure: (({a set of decision
variables,} (a set of variable domains}), {a set of constraints}), hence some AND/OR – like graph
representation can be used both in the course of analysis of the CSP programming (i.e. CP/CLP
problem specification) and its resolution.

The concept of the CSP decomposition reference model provides a well suited framework
for preliminary evaluation of search trees pruning strategies.

4. STATE SPACE PRUNING STRATEGIES

Consider the CSP = ((X,D),C), where X = {x1,x2,x3}, D = {D1,D2,D3}, C = {c1,c2,c3}, and

where: D1 = D2 = D3 = {1,2} , c1 = P[x1], c2 = P[x2], c3 = P[x3]. The CSP consists of the

 x5
 x1 x3 x2 x4 x7 x8 x9 x10 x12

x6 CSP2^ x11
CSP1^

CSP5

CSP

CSP1*
CSP2*

 169

following three elementary problems: CSP1 = (({x1},{D1}),{c1}), CSP2 = (({x2},{D2}),{c2}),
CSP3 = (({x3}),{D3}),{c3}).

Legend:
CSP2*, CSP

6*, CSP
8* - elementary subproblems,

CSP1^ , CSP2^ , CSP2*, CSP
6*, CSP

8* - strongly coupled subproblems
CSP1* , CSP2* = (({x1-x10},{D1-D10}),{c1-c7}) - loosely coupled subproblems,

- decomposition into dependent subproblems
- decomposition into loosely coupled subproblems

Fig.6. Alternative way of the CSP problem decomposition

Fig.7. AND/OR-like graph representation of the CSP possible decompositions

CSP

CSP2
^

CSP 2
^ CSP1^

CSP8
* CSP2

* CSP
6

*

CSP2*= (({x11,x12},{D11,D12}),{c8}) CSP1^=(({x1,x2,...,x6},{D1,D2,...,D6}),{c1,c2,c3})

 CSP2^=(({x7,x8,...,x12}, {D7,D8,...,D12}),{c4,c6,c7,c8})

{c5}

 CSP
6*=(({x7,x8},{D7,D8}),{c4}) CSP8*=(({x9,x10},{D9,D10}),{c6})

{c7}

 CSP=(({x1,x2,...,x12}, {D1,D2,...,D12}),{c1,c2,...,c8})

 170

The number of possible solutions is equal to 2 ∗ 2 ∗ 2 = 8, however the number of
backtrackings required to check their feasibility is greater, and equals to 11 (see Fig. 8). The
number of backtrackings can be estimated by the formulae (4).

)1()(
11

−= ∏∑
==

i

h

j
h

L

i
ZjN (4)

where:
k – the index of the k-th elementary problem of a CSP,
L – the number of elementary problems
j – the j-th permutation of the set of elementary problem,
h – the index of an elementary problem placed at the h-th position in the jk-th permutation

of the set of elementary problem obtained from the CSP

)(kZ j
h – a number of potential assignments of the decision variables of the k-th

elementary problem placed at the h-th position in the jk-th permutation.

 - labeled backtracking

Fig.8. Searching tree encompassed by backtrackings

So, assuming (PSO2,PSO1 ,PSO3) as the j-th permutation of elementary problems {PSO1,

PSO2 ,PSO3 } as well as)2(Z j
h =)1(Z j

h =)3(Z j
h = 2, the number of backtrackings N(j)

equals to: 1 + 2∗2 – 1 + 2∗2∗2 – 1 = 11
In general case, however, since the cardinality of a set of possible solutions of each

elementary problem {CSP1,CSP2,…,CSPL}of CSP can be seen as a multiple of its variables
domains, hence the possible orders of CSP resolution are determined by L! permutations of the
set of elementary problems. Of course, the different permutations lead to the different results,
i.e. different numbers of backtrackings.

In order to illustrate this fact let us consider the CSP = ((X,D),C), where X =
{x1,x2,x3,x4,x5,x6}, D = {d1,d2,d3,d4,d5,d6}, C = {c1,c2,c3}, and where: D1 = D2 = D3 =
{1,2} , D4 = D5 = D6 = {1,2,3} c1 = P[x1,x2], c2 = P[x3,x4], c3 = P[x5,x6]. The CSP
considered consists of the following three elementary problems: CSP1 =
(({x1,x2},{D1.D2}),{c1}), CSP2 = (({x3.x4},{D3,D4}),{c2}), CSP3 = (({x5,x6}),{D5,D6}),{c3}).
Among the possible 3! permutations let us focus on the following two ones: (PSO1,PSO2
,PSO3), and (PSO3,PSO1,PSO2).

1 2

3

4 8 1195
i

 171

Since CSP1 results in possible 2 ∗ 2 = 4 solutions (assignments), and CSP2 results in
possible 2 ∗ 3 = 6 solutions, and CSP3 results in possible 3 ∗ 3 = 9 solutions, hence first
permutation result in 4 – 1 + 4∗6 – 1 + 4∗6∗9 – 1 = 241 backtrackings, and the second one in
9 – 1 + 9∗4 – 1 + 9∗4∗6 – 1 = 258 backtrackings.

In the considered case, however, the way of backtrackings estimation suffers from omitting
the number of possible backtrackings at elementary problem levels. Note, that for the case
when elementary problem consists of three and more variables a number of required
backtracking is bigger than number of possible solutions to the problem.

In order to overcome this disadvantage the modified formulas are proposed (5), (6).

)1),(()(
11

−= ∏∑
==

kjNjN k

k

r

j
r

L

k

 (5)

where:
L – the number of elementary problems of a CSP,
j – the j-th permutation of a set of the elementary problems of a CSP,
r – the index of an elementary problem placed at the r-th position in the j-th permutation,
k – the index of the k-th elementary problem,
jk – the jk-th permutation of a set of the k-th elementary problem variables,

),(kjk
j

rN – the number of potential backtrackings of the k-th elementary problem
resolved due to the jk-permutation of variables, the k-th elementary problem is placed
at the r-th position in the j-th permutation

)1),((),(
1

)(

1
−= ∏∑

==

kikjN
i

h

j
h

kL

i
k Z k (6)

where:
k – the index of the k-th elementary problem of a CSP,
L(k) – the number of the variables of the k-th elementary problem,
i – the index of the i-th variable of the k-th elementary problem,
jk – the k-th permutation of the variables of the k-th elementary problem,
h – the index of the variable placed at the h-th position in the jk-th permutation of the k-th

elementary problem variables,

),(kiZ kj
h – the cardinality of the i-th variable domain, i.e., the variable placed at the h-the

position in the jk-th variables permutation of the k-th elementary problem

So, in order to obtain a correct evaluation of the backtracking number required to find a set

of admissible solutions of a CSP, the permutation of elementary problems as well as variables
permutation in each elementary problem have to be assumed. The variables and elementary
problems permutation determine the order of variables substitution and elementary problems
resolution, respectively.

In the case considered, for the set of elementary problems {CSP1,CSP2 ,CSP3} let us
consider:

• the permutation (CSP1,CSP2 ,CSP3) and the following variables permutation: (x1,x2)
for CSP1, (x3,x4) for CSP2, and (x5,x6) for CSP3 ,

• the permutation (CSP3,CSP1 ,CSP2) and the following variables permutation: (x1,x2)
for CSP1, (x3,x4) for CSP2, and (x5,x6) for CSP3.

 172

In the first case, since CSP1 results (see formulae (5)) in possible 1 + 2 ∗ 2 –1 = 4 solutions
(assignments), and CSP2 results in possible 1 + 2 ∗ 3 – 1= 6 solutions, and CSP3 results in
possible 2 + 3 ∗ 3 – 1 = 10 solutions, hence due to the formulae (6) the number of
backtrackings equals to 4 – 1 + 4∗6 – 1 + 4∗6∗10 – 1 = 275 backtrackings. In the second case,
however, the number of backtrackings equals to 10 – 1 + 10∗4 – 1 + 10∗4∗6 – 1 = 287
backtrackings.

Assuming a new variables permutation: (x1,x2) for CSP1, (x3,x4) for CSP2, and (x5,x6) for
CSP3, the relevant numbers of backtrackings equal to: 309, and 357, respectively.

The above observation providing a way of pruning strategies evaluation can be generalized
for the case of loosely and strongly coupled subproblems of CSP. The formulas allowing one to
evaluate the pruning strategies for a given CSP decomposition as well as for assumed
subproblems and variables permutation see the formulae (7), and (8), respectively.

)1),(()(
11

−= ∏∑
==

kjjNjN k

L

r
r

L

k
d

d (7)

where:
L – the number of the subproblems obtained due to the d-th decomposition of a CSP,
jd – the jd-th permutation of a set of subproblems obtained due to the d-th decomposition of

a CSP,
r – the index of the subproblem placed in the r-th position in the jd-th permutation,
k – the k-th subproblem of a set of subproblems obtained due to the d-th decomposition of

a CSP,
jk – the jk-th permutation of a set of the k-th subproblem variables,

),(kjk
j

rN d – the number of potential backtrackings of the k-th subproblem placed at
the r-th position in the jd-th permutation

)1),((),(
)(

1

)(

1
−= ∏∑

==

kikjN
kL

h

j
h

kL

i
k Z k (8)

where:
k – the k-th subproblem of a set of subproblems obtained due to the d-th decomposition of

a CSP,
L(k) – the number of the variables of the k-th subproblem,
i – the index of the i-th variable of the k-th subproblem,
jk – the k-th permutation of the variables of the k-th subproblem,
h – the index of the variable placed at the h-th position in the jk-th permutation of the k-th

subproblem variables,

),(kiZ kj
h – the cardinality of the i-th variable domain, i.e., the variable placed at the h-th

position in the jk-th variables permutation of the k-th subproblem

In order to summarize the section it should be noticed that since with arcs of a AND/OR

graph it is possible to bind weight factors determining the necessary number of searches, hence
such representation provides a way to chose the best searching strategy, i.e. a variant with least
number of backtrackings. In the case of a CSP decomposition into a set of
{CSP1,CSP2,…,CSPL} the relevant searching tree is shown in Fig. 9.

 173

Fig.9. Searching tree for CSP decomposed into the set of elementary problems
In the case considered the number W of possible searching strategies for the CSP

composed of L elementary problems consisting of the K1, K2,…,KL variables can be estimated
due to the upper bound stated by the formulae (9). It means that for the CSP consisting of L =
10 elementary problems each of them containing Ki = 2 variables the number of possible
searching is equal to SS = 21010! ≈ 3,6 * 107. Note that the estimation formula does not take
into account the number of possible CSP decompositions!

!LKMW L= (9)

where
}{max

},...,1{
i

Li
KW

∈
=

Therefore the problem of selection of the optimal (i.e. requiring the less backtrackings)
state space pruning strategy seems to be at least NP-complete one. So, the branch and bound
method can be considered in the course of the best searching strategy selection. The idea
standing behind of this concept is shown in Fig. 10.

For a given CSP decomposition, i.e., for a given set of subproblems {CSP1,CSP2,…,CSPL}
the set of upper bound values {W1,W2,…,WL} is calculated (due to the formulae (7) and/or (8).
Than for the subproblem to which the lowest value of the upper bound is assigned the next
subproblem is selected as to find the order in which the subproblems should be resolved while
requiring the lowest number of backtrackings.

In general case, instead of the upper bound considered till now the other measures
(heuristics) could be taken into account. For the illustration of such possibility let us consider
the following example.

CSP1 CSP2

CSP1

CSPL

CSP

...
CSPL-1 CSP2

CSPL-1

CSPL

CSPL-1

CSPL

CSP2

CSP1

...

...

1 2 L! - subproblems

CSPL-1

xi

xk

xj

...

xj

xk

xi

...

xk

xi

xr

...

...

 1 2 FL-1
permutation of CSPL-1 variables

 174

Fig.10. Branch and bound method approach to pruning strategy selection

Given a CSP = ((X,D),C) such that X = {x1, x2, x3, x4, x5}, D = {D1, D2, D3, D4, D5}, D1, =

D2 = D3 = D4 = D5 = {1,2,3,…,100}, C= {c1, c2, c3, c4} , c1 = P[2*x1+x2 ≤ x3] , c2 = P[2*x2 =
x4] , c3 = P[x4*x5 ≤ x1*x3] , c4 = P[x3*x4*x5 ≤ 300].

As result of constraints propagation, i.e., the reduction of the domains D1={1,2,…,36},
D2={1,2,…,24}, D3= {3,4,…,74}, D4= {4,5,…,96}, D5= {1,2,…,24} the state space size of
1005 is reduced to the size equal to 138 848 256. The constraint influence on the state space
size reduction is shown in the Table 1.

Using the results obtained one may consider a searching strategy employing the order of
constraints propagation. Such strategy assumes step by step elementary problems resolution
emphasizing a dynamic of state space reduction (i.e., a heuristics assuming: “faster state space
reduction, shorter searching time”). The evaluation of the possible strategies is shown in the
Table 2.

Tab.1. The state space size reduction influenced by constraints.

Domains of decision variables Constraints

D1 D2 D3 D4 D5

The rate of the state
space reduction

c1 1 - 49 1 - 98 3 - 100 1 - 100 1 - 100 52,94 %

c2 1 - 100 1 - 25 1 - 100 4 - 100 1 - 100 75,75 %

c3 1 - 100 1 - 100 1 - 100 1 - 100 1 - 100 0%

c4 1 - 100 1 - 100 1 - 100 1 - 100 1 - 100 0%

CSP1 WL+1

CSPk WiL+r

CSP1 W1 CSP2 W2 CSPL WL

 CSP

CSP3 W3

CSP1 WL+1

CSPL W2L-1

CSPL WL CSP2 WL+2

...
...
...

...

...

...

...

 175

Tab.2. The state space reduction pruning strategies based on the step by step constraints
propagation

 Constraints and corresponding state space reduction rate

Searching strategy
Searching
 Strategy % % % %

1 c1 52,49 c2 88,35 c3 88,35 c4 98,61
2 c1 52,49 c2 88,35 c4 98,61 c3 98,61
3 c1 52,49 c3 52,94 c2 88,35 c4 98,61
4 c1 52,49 c3 52,94 c4 53,87 c2 98,61
5 c1 52,49 c4 53,87 c2 98,61 c3 98,61
6 c1 52,49 c4 53,87 c3 53,87 c2 98,61
7 c2 75,75 c1 88,35 c) 88,35 c4 98,61
8 c2 75,75 c1 88,35 c4 98,61 c3 98,61
9 c2 75,75 c3 75,75 c1 88,35 cd 98,61

10 c2 75,75 c3 75,75 c4 86,72 c1 98,61
11 c2 75,75 c4 86,72 c1 98,61 c3 98,61
12 c2 75,75 c4 86,72 c3 86,72 c1 98,61

The elements of the third, fifth, seventh and the last column in the Table 2 are calculated as follows:
− the third column [1-(49 ⋅ 98 ⋅ 98 ⋅ 100 ⋅ 100)/(1005)] ⋅ 100% = 52,49% for the constraint c1
− the fifth column [1-(49 ⋅ 25 ⋅ 98 ⋅ 97 ⋅ 100)/(1005)] ⋅ 100% = 88,35% for the constraint c3
− the seventh column [1-(49 ⋅ 25 ⋅ 98 ⋅ 97 ⋅ 100)/(1005)] ⋅ 100% = 88,35% for the constraint c3
− the last column [1-(49 ⋅ 25 ⋅ 98 ⋅ 97 ⋅ 100)/(1005)] ⋅ 100% = 88,35% for the constraint c4

Note that nonlinear constraints are less effective in the state space size reduction than the
linear ones.

5. TASK ORIENTED DECISION SUPPORT TOOLS

Since the reference model, i.e. an object-like AND/OR graph framework, provides the
possibility to estimate the number of decision variables domains values substitution, hence the
influence of data structure, sequence of elementary subproblems solution and domain size on
decision making time may be evaluated as well. In other words, the model considered provides
a well suited framework for development (taking into account the ways of possible problem
specification, available CP/CLP languages, and searching strategies) of a CP-based
programming methodology as well as the development of the task oriented software tools
aimed at the SMEs decision support, e.g. regarding production flow planning.

Many often repeating question regards of the question: Whether in a given shop employed
with the machine tools, automated guided vehicles (AGVs), and buffers and warehouses
a production order submitted can be completed due assumed period? A production order
includes the type of final product to be manufactured, the required quantity and defined due
date as well as a final cost a customer has to pay. The product type is usually defined as the
combination of components that a machine toll is capable of handling. The product type is

 176

specified by an execution route (production routing) that includes one or more execution steps.
In general case, however, a given final product can be produced differently due to alternative
execution routes that differ in the execution steps.

The question stated above is usually considered under assumption in the enterprise executes
several project-like production orders, however some production capability are still available.
So, the question is whether the production order at hand can be accepted for execution in an
enterprise where some resources availability is constrained in time?

The typical workshop layout (see Fig. 11) enables to distinguish two kinds of flows
regarding production and transportation routings, respectively. These flows interact each other
(e.g., via production and batch sizes, AGVs, buffers and warehouses capacities, and so on) and
falls into the following two main subproblems: manufacturing and transportation that may be
resolved in two alternative orders (see Fig.12).

Fig.11. The workshop layout

Fig.12. The possible orders of production flow subproblems resolution

The possible decomposition of the production flow planning is shown in Fig 13. So, the

relevant CSP problem consists of two subproblems corresponding to the manufacturing
(denoted by CSP1) and transportation (denoted by G) subflows. In turn, the subproblem of
manufacturing falls into production routing (denoted by A) and production batch planning and
scheduling (denoted by CSP2). The last subproblem falls into subproblem of scheduling
(denoted by F), and production batch planning (denoted by CSP2,1). Finally, the production
batch planning subproblems falls into the calculation of the number of production batches
(denoted by B) and production batch sizing (denoted by E).

WAREHOUSE

ZT1

ZT2

ZT3

ZP1

VI1

ZP2

ZP3 ZP4

ZP5 ZP6

VI4

VI6

VI2

VI5

VI3

VO1 VO2

VO4

VO6

VO3

VO5

Legend:
ZPj – the i-th machine tool, VIj/VOj– the i-th input/output buffer,
ZTi – the i-th AGV.

Transportation

Manufacturing Transportation

Manufacturing

 177

Fig.13. Decomposition of the production flow planning problem

There are growing needs for decision support tools capable to assist a decision maker in the

course of a new production order evaluation. The possible approach based on CP/CLP
paradigm assumes possibility to adjust the ways of problem specification, its programming
language implementation as well as a searching strategy selection to a class of production
planning problems (specified by scale, production type, e.g. assembly or machining, and so on)
as to respond in on line mode.

Programming methodology proposed takes into account the constraints imposed by
a programmer experience (possible problem statements), by a set of available software tools
(CP/CLP languages), and a set of searching strategies (build-in the software tools as well as
those proposed by programmers) (see Fig.14). The idea standing behind of this approach
assumes that a decision maker has to be supported in the course of a standard requests and
regarding known in advance a class of situations that may occur in the SME at hand.

Fig.14. Stages of the CP-based programming methodology

PROBLEM STATEMENT

PROBLEM SPECIFICATION

CP/CLP LANGUAGE IMPLEMENTATION

SEARCHING STRATEGY

CSP

CSP1

C1

G: Transportation batch sizing and
scheduling

A: Production routing CSP2

E: Production batch sizing B: Number of production
batches

F: Scheduling CSP 2,1

C2

C3

C4

 178

Following these requirements a programmer has to develop a well adjusted CP/CLP based
decision support tool encompassing a specific of an enterprise and production orders
considered.

The illustration of the implementation of the methodology considered into the task oriented
software tools supporting the SME in the course of decision making is shown in Fig. 15. The
way of admissible problem resolution is underlined by the bold frames and arcs.

Fig.15. The tree of possible ways of a CSP programming

Since efficiency of programming (i.e. a size of resolved problem) depends on selected

problem specification, a software tool employed and a chosen searching strategy, hence
designing of the task oriented tools seems to be the only reasonable approach to set-up a CP-
based decision support software. It means, for a given class of CSPs (e.g. production flow
planning ones) and a CP/CLP language assumed, on the base of an experience gathered both
from the analysis of the reference model of CSP decomposition, and multiple experiments that
is possible to develop searching strategy optimal in the sense of minimal number of potential
backtrackings.

6. CONCLUDING REMARKS

A CP/CLP – based modeling framework provides a good platform for consistency checking

between the production order completion requirements and a workshop capability offered. The
CP/CLP methodology presented here seem s to be a promising alternative for commercially
available tools based on other technologies, such as a class of ERP systems. Their application
in solving a real-life problem is quite limited [12], [13].

Also, the proposed approach can be considered as a contribution to project-driven
production flow management applied in make-to-order companies as well as for prototyping of

PROBLEM STATEMENT

PROBLEM
SPECIFICATION #1

PROBLEM
SPECIFICATION #2

PROBLEM
SPECIFICATION #n …

CP/CLP
IMPLEMENTATION #1 …

CP/CLP
IMPLEMENTATION #2

CP/CLP
IMPLEMENTATION # m

SEARCHING
 STRATEGY #1 …

SEARCHING
STRATEGY #2

SEARCHING
STRATEGY #k

 179

the virtual organization structures. That is especially important in the context of a cheap and
user-friendly decision support for the SMEs. Further research is aimed at developing task
oriented searching strategies, implementation of which will support the SME’s decision
making process.

References

[1] BANASZAK Z., JÓZEFOWSKA J. (red.): Project-driven manufacturing, WNT,

Warszawa, 2003.
[2] BANASZAK Z., TOMCZUK I.: Harmonogramowanie przedsięwzięć z wykorzystaniem

technik programowania z ograniczeniami, Red. Knosala R., Komputerowo Zintegrowane
Zarządzanie, WNT, Warszawa, 2004, pp. 38-47.

[3] BANASZAK Z., BZDYRA K.: Programowanie z ograniczeniami w systemach
wspomagania decyzji MŚP. W: Metody sztucznej inteligencji w zarządzaniu i sterowaniu,
II tom serii Zarządzanie i technologie informacyjne. J. Józefowska red. Wyd. Uniw.
Śląskiego, Gliwice, 2005. (w druku).

[4] BARTÁK R.: Incomplete Depth-First Search Techniques: A Short Survey, Proceedings of
the 6th Workshop on Constraint Programming for Decision and Control, Ed. Figwer J.,
2004, pp. 7-14.

[5] BARTÁK R.: Visopt shopfloor: a technology overview, Proceedings of the Workshop on
Constraint Programming for Decision and Control, June, Gliwice, Poland, 2002, pp. 7-15.

[6] BARTÁK R.: On-line guide to constraint programming, Prague, 1998,
http://kti.mff.cuni.cz/~bartak/constraints/

[7] BARTÁK R.: Constraint programming: In pursuit of the holy grail.
http://kti.mff.cuni.cz/~bartak/constraints/

[8] Ilog Solver, Object oriented constraint programming, Ilog S.A., 12, Av. Raspail, BP 7,
94251 Gentilly cedex, France, 1995.

[9] KIS, T.,ËRDOS, G., MÀRKUS, A., VÀNCZA, J.: A Project-Oriented Decision Support
Systems for Production Planning in Make-to-Order Manufacturing. ERCIN News, Bo.58,
July 2004.

[10] ROSSI F.: Constraint (Logic) programming: A Survey on Research and Applications,
K.R. Apt et al. (Eds.), New Trends in Constraints, LNAI 1865, Springer-Verlag, Berlin,
2000, pp. 40-74.

[11] TOMCZUK I., BANASZAK Z., JAKUBOWSKI J., BZDYRA K.: Planning of goods
transportation in distribution networks, Logistics and urban infrastructure, Wrocław,
2004, pp. 150-157.

[12] TOMCZUK I., BANASZAK Z.: Production flow planning based on CLP approach, ed.
Knosala R., Computer Integrated Management, WNT, Warszawa, 2005, pp. 589-600.

[13] TOMCZUK I., BANASZAK Z.: Constraint programming approach for production flow
planning, Proceedings of the 6th Workshop on Constraint Programming for Decision and
Control, 2004, pp. 47-54.

[13] TOMCZUK I., BOROWIECKI T., BANASZAK Z.: Project-driven decision support:
a CLP approach., Automatyzacja-Nowości i Perspektywy, Automation 2004, pp. 333-
343.

[14] TOMCZUK I., BZDYRA K.: Reference model of CSP decomposition. Materiały
konferencyjne, Automatyzacja-Nowości i Perspektywy, Automation 2005, pp. 225-232.

 180

[15] TOMCZUK I., BZDURA K., BANASZAK Z.: Towards CLP-based task-oriented DSS
for SME. Applied Computer Science and Production Management. Vol.1, No 1, 2005,
pp.181-200.

[16] VAN HENTENRYCK P., PERRON L., PUGET J.: Search and Strategies in OPL. ACM
Transactions on Computational Logic, Vol. 1, No. 2, 2000, pp. 1-36.

[17] VAN HENTENRYCK, P.: Constraint Logic Programming, Knowledge Engineering
Review, Vol. 6, 1991, pp. 151–194.

[18] WALLACE M.: Constraint Logic Programming, Ed. Kakas A.C., Sadri F., Computat.
Logic, LNAI 2407, Springer-Verlag, Berlin, Heidelberg 2000, pp. 512-532.

