PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Joule heating due to magnetohydrodynamic slip flow in an inclined channel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Graphene oxide nanoparticles with higher thermal conductivity aid in enhancing the flow and heat transport in magnetohydrodynamic devices such as magnetohydrodynamic pumps. Modelling such devices with promising applications inherently necessitates entropy studies to ensure efficient models. This investigation theoretically studies the entropy generation in magnetohydrodynamic flow of graphene oxide in an inclined channel. Buongiorno nanofluid model is used including the impacts of nanoparticle attributes, namely thermophoretic and Brownian diffusion along with viscous dissipation effects. The spectral quasi-linearization method with Chebyshev’s polynomials is adapted to solve the differential equations under slip conditions. On studying the effects of implanted parameters, it is concluded that the conductive heat transfer enhancement by the Hartmann number is remarked. The Bejan number is found to be greater than 0.9 and hence, heat transfer primarily causes the entropy generation. A good agreement is found between the results for special cases and the results from the literature. Furthermore, investigations conclude that entropy is contributed primarily by heat transfer.
Rocznik
Strony
89--98
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • Indian Institute of Information Technology Tiruchirappalli, Trichy - Madurai Highway, Sethurapatti, Tamil Nadu 620012, India
  • Indian Institute of Information Technology Tiruchirappalli, Trichy - Madurai Highway, Sethurapatti, Tamil Nadu 620012, India
  • Indian Institute of Information Technology Tiruchirappalli, Trichy - Madurai Highway, Sethurapatti, Tamil Nadu 620012, India
Bibliografia
  • [1] Buongiorno, J. (2006). Convective transport in nanofluids. Journal of Heat Transfer, 128(3), 240–250. doi: 10.1115/1.2150834
  • [2] Abro, K.A., & Abdon, A. (2022). A computational technique for thermal analysis in coaxial cylinder of one-dimensional flow of fractional Oldroyd-B nanofluid. International Journal of Ambient Energy, 43(1), 5357–5365. doi: 10.1080/01430750.2021.1939157
  • [3] Akram, M., Jamshed, W., Goud, B.S., Pasha, A.A., Sajid, T., Rahman, M.M., Arshad, M., & Weera, W. (2022). Irregular heat source impact on Carreau nanofluid flowing via exponential expanding cylinder: A thermal case study. Case Studies in Thermal Engineering, 36, 102171. doi: 10.1016/j.csite.2021.102171
  • [4] Shah, R.A., Ullah, H., Khan, M.S., & Khan, A. (2021). Parametric analysis of the heat transfer behavior of the nano-particle ionic-liquid flow between concentric cylinders. Advances in Mechanical Engineering, 13(6), 16878140211024009. doi: 10.1177/16878140211024009
  • [5] Javanmard, M., Salmani, H., Taheri, M.H., Askari, N., & Kazemi, M.A. (2021). Heat transfer of a radial, nanofluid water-graphene oxide hydromagnetic flow between coaxial pipes with a variable radius ratio. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering,235(1), 124–133. doi: 10.1177/0954408920948194
  • [6] Masood, S., & Farooq, M. (2021). Influence of thermal stratification and thermal radiation on graphene oxide-Ag/H2O hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 143,1361–1370. doi: 10.1007/s10973-020-10227-7
  • [7] Ramesh, G.K., Shehzad, S.A., & Izadi, M. (2022). Falkner–Skan flow of aqueous magnetite–graphene oxide nanoliquid driven by a wedge. Chinese Journal of Physics, 77, 733–746. doi: 10.1016/j.cjph.2021.07.023
  • [8] Bhattacharyya, A., Sharma, R., Hussain, S.M., Chamkha, A.J., & Mamatha, E. (2022). A numerical and statistical approach to capture the flow characteristics of Maxwell hybrid nanofluid containing copper and graphene nanoparticles. Chinese Journal of Physics, 77, 1278–1290. doi: 10.1016/j.cjph.2021.09.015
  • [9] Lavine, A.S. (1988). Analysis of fully developed opposing mixed convection between inclined parallel plates. Wärme-und Stoffübertragung, 23(4), 249–257. doi: 10.1007/BF01807328
  • [10] Choi, S.U.S., & Eastman, J.A. (1995). Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., Argonne, IL (United States), No. ANL/MSD/CP-84938; CONF951135-29.
  • [11] Talabi, S.O., & Nwabuko, U. (1993). Numerical solution of natural convective heat transfer in parabolic enclosures. International Journal of Heat and Mass Transfer, 36(17), 4275–4281. doi: 10.1016/0017-9310(93)90090-S
  • [12] Barai, D.P., Bhanvase, B.A., & Sonawane, S.H. (2020). A review on graphene derivatives-based nanofluids: Investigation on properties and heat transfer characteristics. Industrial and Engineering Chemistry Research, 59(22), 10231–10277. doi: 10.1021/acs.iecr.0c00865
  • [13] Azimi, M., Azimi, A., & Mirzaei, M. (2014). Investigation of the unsteady graphene oxide nanofluid flow between two moving plates. Journal of Computational and Theoretical Nanoscience, 11(10), 2104–2108. doi: 10.1166/jctn.2014.3612
  • [14] Gul, T., Ullah, M.Z., Alzahrani, A.K., & Amiri, I.S. (2019). Thermal performance of the graphene oxide nanofluids flow in an upright channel through a permeable medium. IEEE Access, 7,102345–102355. doi: 10.1109/ACCESS.2019.2927787
  • [15] Shahzad, F., Jamshed, W., Eid, M.R., El Din, S.M., & Banerjee, R. (2023). Mathematical modelling of graphene-oxide/kerosene oil nanofluid via radiative linear extendable surface. Alexandria Engineering Journal, 70, 395–410. doi: 10.1016/j.aej.2023.02.034
  • [16] Nazari, M.A., Ghasempour, R., Ahmadi, M.H., Heydarian, G., & Shafii, M.B. (2018). Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. International Communications in Heat and Mass Transfer, 91, 90–94. doi: 10.1016/j.icheatmasstransfer.2017.12.006
  • [17] Dehghan, P., Keramat, F., Mofarahi, M., & Lee, C.H. (2023). Computational fluid dynamic analysis of graphene oxide/water nanofluid heat transfer over a double backward-facing microchannel. Journal of the Taiwan Institute of Chemical Engineers,145, 104821. doi: 10.1016/j.jtice.2023.104821
  • [18] Pashikanti, J., Thota, S., & Priyadharshini, D.R.S. (2024). Effect of viscous dissipation due to magnetohydrodynamic flow in an inclined channel. Chinese Journal of Physics, 87, 82–96. doi:10.1016/j.cjph.2023.11.015
  • [19] Javanmard, M., Taheri, M.H., Abbasi, M., & Ebrahimi, S.M. (2018). Heat transfer analysis of hydromagnetic water–graphene oxide nanofluid flow in the channel with asymmetric forced convection on walls. Chemical Engineering Research and Design, 136, 816–824. doi: 10.1016/j.cherd.2018.06.041
  • [20] Hafeez, M., Hashim, & Khan, M. (2020). Jeffrey–Hamel flow of hybrid nanofluids in convergent and divergent channels with heat transfer characteristics. Applied Nanoscience, 10, 5459–5468. doi: 10.1007/s13204-020-01427-6
  • [21] Raza, A., Khan, S.U., Khan, M.I., Farid, S., Muhammad, T., Khan, M.I., & Galal, A.M. (2021). Fractional order simulations for the thermal determination of graphene oxide (GO) and molybdenum disulphide (MoS2) nanoparticles with slip effects. Case Studies in Thermal Engineering, 28, 101453. doi: 10.1016/j.csite.2021.101453
  • [22] Pavithra, K.M., Hanumagowda, B.N., Varma, S.V.K., Ahammad, N.A., Raju, C.S.K., & Noeiaghdam, S. (2023). The impacts of shape factors in a chemically reacting two-passage vertical channel filled with kerosene-based graphene oxide and MoS2 mixture in a porous medium. Results in Engineering, 18, 101050. doi:10.1016/j.rineng.2021.101050
  • [23] Akram, S., Athar, M., Saeed, K., Razia, A., Muhammad, T., & Hussain, A. (2023). Hybrid double-diffusivity convection and induced magnetic field effects on peristaltic waves of Oldroyd 4- constant nanofluids in non-uniform channel. Alexandria Engineering Journal, 65, 785–796. doi: 10.1016/j.aej.2022.10.039
  • [24] Nazeer, M. (2023). Multiphase flow development in gravitational and magnetic fields. Waves in Random and Complex Media,1−15. doi: 10.1080/17455030.2023.2193853
  • [25] Yasin, M., Hina, S., & Naz, R. (2023). Influence of inclined magnetic field on peristaltic flow of Ag–Cu/blood hybrid nanofluid in the presence of homogeneous–heterogeneous reactions with slip condition. Arabian Journal for Science and Engineering, 48(1), 31–46. doi: 10.1007/s13369-022-06942-y
  • [26] Srinivasacharya, D., & Bindu, K.H. (2015). Entropy generation in a micropolar fluid flow through an inclined channel with slip and convective boundary conditions. Energy, 91, 72–83. doi:10.1016/j.energy.2015.08.014
  • [27] Khan, M.N., Ullah, N., & Nadeem, S. (2021). Transient flow of Maxwell nanofluid over a shrinking surface: Numerical solutions and stability analysis. Surfaces and Interfaces, 22, 100829. doi:10.1016/j.surfin.2020.100829
  • [28] Khan, M.N., & Nadeem, S. (2020). Theoretical treatment of bioconvective Maxwell nanofluid over an exponentially stretching sheet. Canadian Journal of Physics, 98(8), 732–741. doi:10.1139/cjp-2019-0380
  • [29] Khan, M.N., & Nadeem, S. (2021). A comparative study between linear and exponential stretching sheet with double stratification of a rotating Maxwell nanofluid flow. Surfaces and Interfaces,22, 100886. doi: 10.1016/j.surfin.2020.100886
  • [30] Nadeem, S., Khan, M.N., Muhammad, N., & Ahmad, S. (2019). Mathematical analysis of bio-convective micropolar nanofluid. Journal of Computational Design and Engineering, 6(3), 233−242. doi: 10.1016/j.jcde.2019.04.001
  • [31] Khan, M.N., Nadeem, S., & Muhammad, N. (2020). Micropolar fluid flow with temperature‐dependent transport properties. Heat Transfer, 49(4), 2375–2389. doi: 10.1002/htj.21726
  • [32] Nadeem, S., Khan, M.N., & Abbas, N. (2020). Transportation of slip effects on nanomaterial micropolar fluid flow over exponentially stretching. Alexandria Engineering Journal, 59(5),3443−3450. doi: 10.1016/j.aej.2020.05.024
  • [33] Ahmad, S., Nadeem, S., Muhammad, N., & Khan, M.N. (2021). Cattaneo–Christov heat flux model for stagnation point flow of micropolar nanofluid toward a nonlinear stretching surface with slip effects. Journal of Thermal Analysis and Calorimetry, 143,1187–1199. doi: 10.1007/s10973-020-09504-2
  • [34] Khan, M.N., Nadeem, S., Ullah, N., & Saleem, A. (2020). Theoretical treatment of radiative Oldroyd-B nanofluid with microorganism pass an exponentially stretching sheet. Surfaces and Interfaces, 21, 100686. doi: 10.1016/j.surfin.2020.100686
  • [35] Gul, T., Ullah, M.Z., Alzahrani, A.K., & Amiri, I.S. (2019). Thermal performance of the graphene oxide nanofluids flow in an upright channel through a permeable medium. IEEE Access, 7,102345–102355. doi: 10.1109/access.2019.2927787
  • [36] Elsaid, K., Abdelkareem, M.A., Maghrabie, H.M., Sayed, E.T., Wilberforce, T., Baroutaji, A., & Olabi, A.G. (2021). Thermophysical properties of graphene-based nanofluids. International Journal of Thermofluids, 10, 100073. doi: 10.1016/j.ijft.2021.100073
  • [37] Al-Sankoor, K., Al-Gayyim, H., Al-Musaedi, S., Asadi, Z., & Ganji, D.D. (2021). Analytically investigating of heat transfer parameters with presence of graphene oxide nanoparticles in Williamson-magnetic fluid by AGM and HPM methods. Case Studies in Thermal Engineering, 27, 101236. doi: 10.1016/j.csite.2021.101236
  • [38] Lide, D.R. (Ed.). (2004). CRC handbook of chemistry and physics. (Vol. 85). CRC Press.
  • [39] Ghadikolaei, S.S., Hosseinzadeh, K.H., Hatami, M., Ganji, D.D., & Armin, M. (2018). Investigation for squeezing flow of ethylene glycol (C2H6O2) carbon nanotubes (CNTs) in rotating stretching channel with nonlinear thermal radiation. Journal of Molecular Liquids, 263, 10–21. doi: 10.1016/j.molliq.2018.04.141
  • [40] Chu, Y.M., Nisar, K.S., Khan, U., Kasmaei, H.D., Malaver, M., Zaib, A., & Khan, I. (2020). Mixed convection in MHD waterbased molybdenum disulfide-graphene oxide hybrid nanofluid through an upright cylinder with shape factor. Water, 12(6), 1723.doi: 10.3390/w12061723
  • [41] Bejan, A. (1996). Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. Journal of Applied Physics, 79(3), 1191–1218. doi: 10.1063/1.362674
  • [42] Bejan, A., & Kestin, J. (1983). Entropy generation through heat and fluid flow. Journal of Applied Mechanics, 50(2), 475-475.doi: 10.1115/1.3167072
  • [43] Paoletti, S., Rispoli, F., & Sciubba, E. (1989). Calculation of exergetic losses in compact heat exchanger passages. ASME, Advanced Energy Systems, 10(2), 21–29.
  • [44] Bellman, R.E. (1965). Quasilinearization and nonlinear boundary-value problems. (Vol. 3). American Elsevier Publishing Company.
  • [45] Canuto, C., Hussaini, M.Y., Quarteroni, A., & Zang, T.A. (2007). Spectral methods: fundamentals in single domains. Springer Science & Business Media.
  • [46] Malashetty, M.S., Umavathi, J.C., & Prathap Kumar, J. (2001). Convective magnetohydrodynamic two fluid flow and heat transfer in an inclined channel. Heat and Mass transfer, 37(2−3), 259−264. doi: 10.1007/s002310000134
  • [47] Behseresht, A., Noghrehabadi, A., & Ghalambaz, M. (2014). Natural-convection heat and mass transfer from a vertical cone in porous media filled with nanofluids using the practical ranges of nanofluids thermo-physical properties. Chemical Engineering Research and Design, 92(3), 447–452. doi: 10.1016/j.cherd.2013.08.028
  • [48] Makinde, O.D., & Eegunjobi, A.S. (2013). Effects of convective heating on entropy generation rate in a channel with permeable walls. Entropy, 15(1), 220–233. doi: 10.3390/e15010220
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a579b60a-c22c-4db5-97a5-8628cb6b4f51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.